Wang Jingxuan, Zhang Yang, Chen Zefang, et al. Relationship between current characteristics of rocket-triggered lightning during different discharge stages. J Appl Meteor Sci, 2020, 31(2): 224-235. DOI:  10.11898/1001-7313.20200209.
Citation: Wang Jingxuan, Zhang Yang, Chen Zefang, et al. Relationship between current characteristics of rocket-triggered lightning during different discharge stages. J Appl Meteor Sci, 2020, 31(2): 224-235. DOI:  10.11898/1001-7313.20200209.

Relationship Between Current Characteristics of Rocket-triggered Lightning During Different Discharge Stages

DOI: 10.11898/1001-7313.20200209
  • Received Date: 2019-10-08
  • Rev Recd Date: 2019-12-18
  • Publish Date: 2020-03-31
  • The research on rocket-triggered lightning has made great progress since 1967. Various parts of rocket-triggered lightning are studied, but differences between initial stages of different types of rocket-triggered lightning and the relevance on each part of rocket-triggered lightning is still not well understood. Based on the rocket-triggered lightning current data obtained from Guangdong Comprehensive Observation Experiment on Lightning Discharge in Field Experiment Base on Lightning Sciences, China Meteorological Administration, two types of rocket-triggered lightning are classified considering the existence of return storke(RS)and the length of the initial continuous current(ICC). Differences of rocket-triggered lightning in different categories and the correlation between various parts are analyzed. Firstly, the difference between the rocket-triggered lightning with return strokes and the rocket-triggered lightning without return strokes is obvious. The precursor current pulse(PCP)and initial precursor current pulse(IPCP)average peak current, IPCP transfer charge, ICC average current and total transfer charge and duration of lightning with RSs are greater than those of lightning without RSs. Secondly, longer ICC duration corresponds to higher average peak current, first return charge and first RS peak current, PCP and IPCP peak current, PCP and IPCP average transfer charge of triggered lightning. It is also found that the average peak value of PCP and IPCP has the strongest correlation with ICC duration. The larger the average peak value of PCP and IPCP is, the longer the ICC duration is. It's also found that during the ascent of the rocket, the transfer charge of PCP tends to increase as the altitude of the rocket increases. There are some PCP pulse clusters that cannot produce a continuous upward leader (UPL), and it fails to produce an ICC. The average transfer charge of the PCP cluster is smaller than the average transfer charge of the initial precursor current pulse cluster (IPCP). According to the analysis of data, one of the conditions for the PCP cluster that fails to generate ICC to become IPCP is that the average transfer charge is greater than 25.91 μC.
  • Fig. 1  Channel-base current of triggered lightning and the amplified waveform

    (a)the whole current waveform, (b)a precursor current pulse for a single amplified display, (c)the initial precursor current pulse for the amplified display, (d)the initial continuous current for the amplified display, (e)a return stroke (RS) for the amplified display

    Fig. 2  Relationship between electric field intensity of ground electrostatic field and total time of PCP stage

    Fig. 3  ICC duration versus average peak current of RSs(a), peak current of first subsequent RS(b), average transfer charge of RSs(c) and transfer charge of first subsequent RS(d)

    Fig. 4  Relationship between the total transfer charge of ICC and the average peak current of RSs(a), the peak current of the first subsequent RS(b), the average charge transfer of RSs(c), and the charge transfer of the first subsequent RS(d)

    Fig. 5  Relationship between the average peak current of PCP and the transfer charge of the first subsequent RS(a), average peak current of RSs(b), and relationship between the average peak current of IPCP and transfer charge of the first subsequent RS(c), average peak current of RSs(d)

    Fig. 6  Relationships between the duration of ICC with the average peak current of PCP(a), the average charge transfer of PCP(b), the average peak current of IPCP(c) and the average charge transfer of IPCP(d)

    Fig. 7  Current waveform(a) and charge transfer distribution of current pulse(b) in initial stage of sample No.630

    Table  1  Basic characteristics of 14 rocket-triggered lightning bottom current data from Jun to Jul in 2019

    日期 闪电编号 触发方式 闪电极性 回击次数
    06-05 900 传统 2
    06-05 780 传统 12
    06-06 053 传统 3
    06-06 41 传统 5
    06-06 05 传统 1
    06-11 66 传统 8
    06-11 570 传统 7
    06-04 370 传统 0
    06-05 190 传统 0
    07-22 630 传统 0
    07-22 110 传统 0
    07-22 140 传统 0
    07-23 120 传统 0
    07-23 860 传统 0
    DownLoad: Download CSV

    Table  2  Overall current characteristics

    统计参量 几何平均值 最大值 最小值
    PCP峰值电流/A 10.831 68.374 4.774
    PCP转移电荷量/μC 11.029 82.257 0.074
    PCP半峰宽/μs 0.649 0.773 0.528
    PCP上升沿时间(10%~90%)/μs 0.487 3.000 0.100
    IPCP峰值电流/A 17.179 70.085 5.718
    IPCP转移电荷量/μC 37.479 87.367 5.303
    IPCP半峰宽/μs 1.036 1.467 0.656
    IPCP上升沿时间(10%~90%)/μs 0.733 2.600 0.100
    ICC平均电流/A 36.147 161.258 2.349
    ICC总体转移电荷量/C 3.667 60.074 0.003
    ICC持续时间/ms 101.437 561.916 1.163
    RS峰值电流/kA 12.292 36.449 3.341
    RS转移电荷量/C 0.796 5.318 0.163
    DownLoad: Download CSV

    Table  3  Parameters of PCP, IPCP and ICC duration for with or without triggered lightning

    统计参量 有回击(几何平均) 无回击(几何平均)
    PCP平均峰值电流/A 15.59 9.05
    PCP总体转移电荷量/μC 1127.08 1649.02
    IPCP平均峰值电流/A 23.12 12.13
    IPCP总体转移电荷量/μC 381.96 262.59
    ICC平均电流/A 89.06 12.62
    ICC总体转移电荷量/C 25.70 0.38
    ICC持续时间/ms 288.61 29.95
    DownLoad: Download CSV

    Table  4  PCP and IPCP parameters corresponding to triggered lightning with initial long, short, very short continuous current

    统计参量 初始长连续电流 初始短连续电流 初始极短连续电流
    PCP平均峰值电流/A 22.07 12.94 8.45
    PCP平均转移电荷量/μC 22.87 18.47 12.47
    PCP总体转移电荷量/μC 1109.65 1734.82 1712.78
    IPCP平均峰值电流/A 27.52 16.79 11.17
    IPCP平均转移电荷量/μC 49.02 40.50 33.55
    IPCP总体转移电荷量/μC 446.81 128.07 285.76
    DownLoad: Download CSV
  • [1]
    Qie X, Zhang Y, Yuan T, et al.A review of atmospheric electricity research in China.Adv Atmos Sci, 2014, 32(2):169-191. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz-e201909008
    [2]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.3969/j.issn.1001-7313.2006.05.011
    [3]
    马明, 吕伟涛, 张义军, 等.1997-2006年我国雷电灾情特征.应用气象学报, 2008, 19(4):393-400. doi:  10.3969/j.issn.1001-7313.2008.04.002
    [4]
    高燚, 张义军, 张文娟, 等.我国雷击致人伤亡特征及易损度评估区划.应用气象学报, 2012, 23(3):294-303. doi:  10.3969/j.issn.1001-7313.2012.03.005
    [5]
    Newman M M, Stahmann J R, Robb J D, et al.Triggered lightning strokes at very close range.J Geophys Res Atmos, 1967, 72(18):4761-4764. doi:  10.1029/JZ072i018p04761
    [6]
    Fieux R, Gary C, Hubert P.Artificially triggered lightning above land.Nature, 1975, 257:212-214. doi:  10.1038/257212a0
    [7]
    吕伟涛, 张义军, 周秀骥, 等.火箭触发闪电通道的亮度特征分析.气象学报, 2007, 65(6):983-993. doi:  10.3321/j.issn:0577-6619.2007.06.016
    [8]
    张其林, 郄秀书, 孔祥贞, 等.人工引发闪电和自然闪电回击电流波形的对比分析.中国电机工程学报, 2007, 27(6):67-71. doi:  10.3321/j.issn:0258-8013.2007.06.015
    [9]
    Yang J, Qie X, Zhang G, et al.Magnetic field measuring system and current retrieval in artificially triggering lightning experiment.Radio Sci, 2008, 43(2), DOI: 10.1029/2007RS003753.
    [10]
    Sun Z, Qie X, Jiang R, et al.Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation.J Geophys Res Atmos, 2014, 119(23):13388-13399. doi:  10.1002/2014JD022100
    [11]
    Zhang Y, Chen S, Zheng D, et al.Experiments on lightning protection for automatic weather stations using artificially triggered lightning.LEEJ T Electr Electr, 2013, 8(4):313-321. doi:  10.1002/tee.21861
    [12]
    Jiang R, Qie X, Yang J, et al.Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism.Radio Sci, 2013, 48(5):597-606. doi:  10.1002/rds.20065
    [13]
    Hubert P, Laroche P, Eybert-Berard A, et al.Triggered lightning in New Mexico.J Geophys Res Atmos, 1984, 89(D2):2511-2521. doi:  10.1029/JD089iD02p02511
    [14]
    Wang D, Rakov V A, Uman M A, et al.Characterization of the initial stage of negative rocket-triggered lightning.J Geophys Res Atmos, 1999, 104(D4):4213-4222. doi:  10.1029/1998JD200087
    [15]
    Lu G, Zhang H, Jiang R, et al.Characterization of initial current pulses in negative rocket-triggered lightning with sensitive magnetic sensor.Radio Sci, 2016, 51(9):1432-1444. doi:  10.1002/2016RS005945
    [16]
    Fan Y, Lu G, Jiang R, et al. Characteristics of electromagnetic signals during the initial stage of negative rocket-triggered lightning.J Geophys Res Atmos, 2018, 123(20):11625-11636. doi:  10.1029/2018JD028744
    [17]
    Zhang Y, Krehbiel P, Zhang, et al.Observations of the initial stage of a rocket-and-wire-triggered lightning discharge.Geophys Res Lett, 2017, 44(9):4332-4340. doi:  10.1002/2017GL072843
    [18]
    张志孝, 郑栋, 张义军, 等.闪电初始阶段和尺度判别方法及其特征.应用气象学报, 2017, 28(4):414-426. doi:  10.11898/1001-7313.20170403
    [19]
    Qie X, Zhang Y.A Review of atmospheric electricity research in China from 2011 to 2018.Adv Atmos Sci, 2019, 36(9):994-1014. doi:  10.1007/s00376-019-8195-x
    [20]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.3969/j.issn.1001-7313.2006.06.019
    [21]
    Zhang Y, Zhang Y J, Xie M, et al.Characteristics and correlation of return stroke, M component and continuing current for triggered lightning.Electr Pow Syst Res, 2016, 139:10-15. doi:  10.1016/j.epsr.2015.11.024
    [22]
    周方聪, 张义军, 吕伟涛, 等.人工触发闪电连续电流过程与M分量特征.应用气象学报, 2014, 25(3):330-338. doi:  10.3969/j.issn.1001-7313.2014.03.010
    [23]
    肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi:  10.3969/j.issn.1001-7313.2013.04.007
    [24]
    张义军, 杨少杰, 吕伟涛, 等.2006-2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi:  10.3969/j.issn.1001-7313.2012.05.001
    [25]
    张阳, 钱勇, 张义军, 等.人工触发闪电上行正先导起始阶段放电特征.高电压技术, 2017, 43(5):1602-1608. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201705028
    [26]
    Jiang R, Qie X, Wang C, et al.Propagating features of upward positive leaders in the initial stage of rocket-triggered lightning.Atmos Res, 2013, 61(3):553-560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8cfe50d6a4c592e8a3cfbea0faead08b
    [27]
    周方聪.地闪连续电流过程的光电观测与特征分析.成都: 成都信息工程学院, 2012.
    [28]
    赵阳, 郄秀书, 孔祥贞, 等.人工触发闪电电流波形特征参数分析.物理学报, 2009, 58(9):6616-6626. doi:  10.3321/j.issn:1000-3290.2009.09.119
    [29]
    Zheng D, Zhang Y, Zhang Y, et al.Characteristics of the initial stage and return stroke currents of rocket-triggered lightning flashes in southern China.J Geophys Res Atmos, 2017, 122(12):6431-6452. doi:  10.1002/2016JD026235
    [30]
    颜鲁林.利用SPSS对大学生学习注意力集中程度进行多元线性回归分析.兰州: 兰州大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10730-1012373954.htm
    [31]
    钱勇, 张阳, 张义军, 等.人工触发闪电先驱电流脉冲波形特征及模拟.应用气象学报, 2016, 27(6):716-724. doi:  10.11898/1001-7313.20160608
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(4)

    Article views (3726) PDF downloads(54) Cited by()
    • Received : 2019-10-08
    • Accepted : 2019-12-18
    • Published : 2020-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint