Chen Shaodong, Zhang Yijun, Yan Xu, et al. Ground potential rise and surge protective device damage caused by initial long continuous current process in triggered lightning. J Appl Meteor Sci, 2020, 31(2): 236-246. DOI:  10.11898/1001-7313.20200210.
Citation: Chen Shaodong, Zhang Yijun, Yan Xu, et al. Ground potential rise and surge protective device damage caused by initial long continuous current process in triggered lightning. J Appl Meteor Sci, 2020, 31(2): 236-246. DOI:  10.11898/1001-7313.20200210.

Ground Potential Rise and Surge Protective Device Damage Caused by Initial Long Continuous Current Process in Triggered Lightning

DOI: 10.11898/1001-7313.20200210
  • Received Date: 2019-10-08
  • Rev Recd Date: 2020-01-17
  • Publish Date: 2020-03-31
  • In the field of grounding on electronic and electrical systems, damage effects of ground potential rise on electronic equipments are of great importance. Based on triggered lightning technology, an observation experiment is carried out on impacts of the ground potential rise in grounding grid upon surge protective device (SPD), especially on damage effects of initial long continuous current process of triggered lightning on SPD. It's found that upon injection of triggered lighting into grounding grid, SPD damage of rated flow rate is likely to occur under combined effects of initial long continuous current process and subsequent return stroke of triggered lightning. When the energy flowing through SPD is accumulated to a given extent, initial long continuous current process alone can also cause SPD damage. The impact on SPD is closely related to different waveforms of initial long continuous current process. When initial long continuous current process superposes ICCP with current of faster rise time and higher amplitude, energy flowing through SPD will increase rapidly, which is the most critical factor causing SPD damage in long continuous current process. The analysis of two cases indicates that, when the duration of initial long continuous current process and average current reaches about 100 ms and 200 A, the magnitude of discharge is 25 C, and energy flowing through SPD is up to about 1000 J, it is apt to cause 20 kA nominal discharge current and even higher SPD damage. Two processes (T0702 and T0726) of SPD are damaged by initial long continuous current of triggered lightning, when the peak value of current flowing through ground wire is 396.5 A and 392.7 A, respectively, the average current of main stage before damage is 23.6 A and 19.7 A, accounting for 10.8% and 6.7% of the average value of trigger lightning current, and the duration of current flowing through SPD above 50 A is 9.2 ms and 6.6 ms, respectively. When SPD is damaged, there is a sudden change in the residual voltage at both ends of SPD, which is obviously different from the disappearance of normal SPD residual voltage.
  • Fig. 1  The schematic diagram of GPR's impact on SPD effect

    Fig. 2  Small range triggered lightning channel bottom current of T0702

    Fig. 3  The waveform of SPD residual voltage(a), triggered lightning current(b) and current flowing through SPD(c) due to the initial long continuous current of T0702

    Fig. 4  SPD residual voltage(a) and large range triggered lightning channel bottom current(b) of T0726

    Fig. 5  The waveform of SPD residual voltage(a), GPR voltage(b) and current flowing through SPD(c) due to the initial long continuous current of T0726

    Fig. 6  The energy accumulated in 0.5 ms and time domain of current flowing through SPD during T0702 and T0726

    Fig. 7  The quantity in 0.5 ms and time domain quantity accumulation curves of triggered lightning current during T0702 and T0725

    Table  1  Triggered lightning processes of GPR impulse to SPD caused by initial long continuous current processes

    触发闪电过程 回击次数及电流峰值 初始长连续电流特征 SPD损坏时刻前的初始连续电流特征 SPD标称放电电流/kA
    T0626 无回击 长连续电流长达480 ms,2 kA以上电流持续时间长达1.3 ms(只有小量程数据) 20
    T0702 1次回击,电流幅值为19.1 kA 持续时间为433.8 ms,峰值电流为718.5 A,平均电流为146.1 A,中和电量为63.4 C 持续时间为149.2 ms,期间平均电流为173.8 A,泄放电量为25.9 C 20
    T0725 4次回击,最大回击电流为26.1 kA 持续时间为313.6 ms,峰值电流为287.4 A,平均电流为106.8 A,中和的电量为33.5 C 初始连续电流期间未损坏,第1次回击出现异常 20
    T0726 4次回击,最大回击电流峰值大于28.7 kA 持续时间为183.3 ms,峰值电流为1079.2 A,平均电流为176.4 A,中和的电量为32.3 C 持续时间为110.1 ms,平均电流为238.3 A,泄放电量为26.2 C 40
    DownLoad: Download CSV
  • [1]
    Eda K.Destruction mechanism of ZnO varistors due to high currents.J Appl Phys, 1984, 56(10):2948-2955. doi:  10.1063/1.333836
    [2]
    Sakshaug E C, Burke J J, Kresge J S.Metal oxide arresters on distribution systems:Fundamental considerations.IEEE Transactions on Power Delivery, 1989, 4(4):2076-2089. doi:  10.1109/61.35633
    [3]
    何金良, 吴维韩, 沈力, 等.ZnO阀片的冲击破坏机理.中国电机工程学报, 1993, 13(增刊I):34-38.
    [4]
    瞿佥炜, 戴明秋, 李锐海, 等.配网线路避雷器阀片90/200μs冲击电流耐受特性试验.南方电网技术, 2015, 9(7):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nfdwjs201507008
    [5]
    吴姗姗, 吕伟涛, 齐奇, 等.基于光学资料的广州塔附近下行地闪特征.应用气象学报, 2019, 30(2):203-210. doi:  10.11898/1001-7313.20190207
    [6]
    Yang J, Qie X, Zhang G, et al.Characteristics of channel base currents and close magnetic fields in triggered flashes in SHATLE.J Geophys Res, 2010, 115(D23), DOI: 10.1029/2010jd014420.
    [7]
    张骁, 张阳, 张义军, 等.NBE和IBP始发的闪电初始特征.应用气象学报, 2018, 29(3):364-373. doi:  10.11898/1001-7313.20180310
    [8]
    姜睿娇, 董万胜, 刘恒毅, 等.雷暴中双极性窄脉冲事件的位置与辐射强度.应用气象学报, 2018, 29(2):177-187. doi:  10.11898/1001-7313.20180205
    [9]
    Rakov V A, Uman M A.Lightning:Physics and Effects.Cambridge:Cambridge University Press, 2003:265-307. http://d.old.wanfangdata.com.cn/Periodical/gdyjs200803001
    [10]
    Jiang R, Qie X, Yang J, et al.Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism.Radio Science, 2013, 48(5):597-606. doi:  10.1002/rds.20065
    [11]
    谢盟, 张阳, 张义军, 等.两种类型M分量物理特征和机制对比.应用气象学报, 2015, 26(4):451-459. doi:  10.11898/1001-7313.20150407
    [12]
    Haryono T, Sirait K T, Tumiran T, et al.The damage of ZnO arrester block due to multiple impulse currents.Telkomnika (Telecommunication Computing Electronics and Control), 2011, 9(1):171-182. doi:  10.12928/telkomnika.v9i1.685
    [13]
    李鹏飞, 张春龙, 吕东波, 等.多脉冲雷电冲击下金属氧化物的破坏形式.高电压技术, 2017, 43(11):3792-3799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201711040
    [14]
    Chen S, Zhang Y, Chen C, et al.Influence of the ground potential rise on the residual voltage of low-voltage surge protective devices due to nearby lightning flashes.IEEE Transactions on Power Delivery, 2016, 31(2):596-604. doi:  10.1109/TPWRD.2015.2441773
    [15]
    朱良, 陈绍东, 颜旭, 等.基于触发闪电的共用地网雷电流分布观测及分析.高电压技术, 2018(5):1715-1722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201805042
    [16]
    张义军, 杨少杰, 吕伟涛, 等.2006-2011年广州人工触发闪电.应用气象学报, 2012, 23(5):513-522. doi:  10.3969/j.issn.1001-7313.2012.05.001
    [17]
    钱勇, 张阳, 张义军, 等.人工触发闪电先驱电流脉冲波形特征及模拟.应用气象学报, 2016, 27(6):716-724. doi:  10.11898/1001-7313.20160608
    [18]
    Mata C T, Rakov V A, Rambo K J, et al.Measurement of the division of lightning return stroke current among the multiple arresters and grounds of a power distribution line.IEEE Transactions on Power Delivery, 2003, 18(4):1203-1208. doi:  10.1109/TPWRD.2003.817541
    [19]
    Zhang Y, Chen S, Zheng D, et al.Experiments on lightning protection for automatic weather stations using artificially triggered lightning.IEEJ Transactions on Electrical and Electronic Engineering, 2013, 8(4):313-321. doi:  10.1002/tee.21861
    [20]
    周方聪, 张义军, 吕伟涛, 等.人工触发闪电连续电流过程与M分量特征.应用气象学报, 2014, 25(3):330-338. doi:  10.3969/j.issn.1001-7313.2014.03.010
    [21]
    Saba M M, Schumann C, Warner T A, et al.Upward lightning flashes characteristics from high-speed videos.J Geophys Res Atmos, 2016, 121(14):8493-8505. doi:  10.1002/2016JD025137
    [22]
    Yuan S, Jiang R, Qie X, et al.Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions.J Geophys Res Atmos, 2017, 122(22):12093-12105. doi:  10.1002/2017JD027198
    [23]
    武斌, 吕伟涛, 齐奇, 等.一次正地闪触发两个并发上行闪电的光电观测.应用气象学报, 2019, 30(3):257-266. doi:  10.11898/1001-7313.20190301
    [24]
    陈绿文, 吕伟涛, 张义军, 等.不同高度建筑物上的下行地闪回击特征.应用气象学报, 2015, 26(3):311-318. doi:  10.11898/1001-7313.20150306
    [25]
    DeCarlo B A, Rakov V A, Jerauld J E, et al.Distribution of currents in the lightning protective system of a residential building-Part Ⅰ:Triggered-lightning experiments.IEEE Transactions on Power Delivery, 2008, 23(4):2439-2446. doi:  10.1109/TPWRD.2008.917894
    [26]
    Birkl J, Barbosa C F.Modeling the Current Through the Power Conductors of an Installation Struck by Lightning//2011 International Symposium on Lightning Protection.IEEE, 2011:36-41.
    [27]
    Schoene J, Uman M A, Rakov V A, et al.Lightning currents flowing in the soil and entering a test power distribution line via its grounding.IEEE Transactions on Power Delivery, 2009, 24(3):1095-1103. doi:  10.1109/TPWRD.2009.2014031
    [28]
    Chen S, Zhang Y, Zhou M, et al.Observation of residual voltage in low-voltage surge protective devices due to nearby M-components.IEEE Transactions on Electromagnetic Compatibility, 2018, 60(3):776-784. doi:  10.1109/TEMC.2017.2737648
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (3506) PDF downloads(55) Cited by()
    • Received : 2019-10-08
    • Accepted : 2020-01-17
    • Published : 2020-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint