Citation: | Li Ying, Chen Huailiang. Review of machine learning approaches for modern agrometeorology. J Appl Meteor Sci, 2020, 31(3): 257-266. DOI: 10.11898/1001-7313.20200301. |
[1] |
Gollin D, Parente S, Rogerson R.The role of agriculture in development.American Economic Review, 2002, 92(2):160-164. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e9e86aed773fa5c71053f57478fb9cfc
|
[2] |
Dodds F, Bartram J.The Water, Food, Energy and Climate Nexus:Challenges and an Agenda for Action.New York:Routledge, 2016.
|
[3] |
Howden S M, Soussana J F, Tubiello F N, et al.Adapting Agriculture to Climate Change//Proceedings of the National Academy of Sciences, 2007, 104(50): 19691-19696.
|
[4] |
United Nations.Transforming Our World:The 2030 Agenda for Sustainable Development.General Assembley 70 Session, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JAKO201531362063374
|
[5] |
Piao S, Ciais P, Huang Y, et al.The impacts of climate change on water resources and agriculture in China.Nature, 2010, 467(7311):43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b4657fe7eaedd68c170a2edb9549cfd
|
[6] |
Crookston R K.A top 10 list of developments and issues impacting crop management and ecology during the past 50 years.Crop Science, 2006, 46(5):2253-2262. http://cn.bing.com/academic/profile?id=3d933006f76b999dbc4291c6b41c0458&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
Mulla D J.Twenty-five years of remote sensing in precision agriculture:Key advances and remaining knowledge gaps.Biosystems Engineering, 2013, 114(4):358-371. http://cn.bing.com/academic/profile?id=c427d4e50053658de12e93ff1ac7093e&encoded=0&v=paper_preview&mkt=zh-cn
|
[8] |
Wang N, Zhang N, Wang M.Wireless sensors in agriculture and food industry-Recent development and future perspective.Computers and Electronics in Agriculture, 2006, 50(1):1-14. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3f07376c0e3e3d3415e4390339021b19
|
[9] |
Kamilaris A, Kartakoullis A, Prenafeta-Boldú F X.A review on the practice of big data analysis in agriculture.Computers and Electronics in Agriculture, 2017, 143:23-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ced4135b2e58d2665c9ed4a8f6946759
|
[10] |
韩丰, 龙明盛, 李月安, 等.循环神经网络在雷达临近预报中的应用.应用气象学报, 2019, 30(1):61-69. doi: 10.11898/1001-7313.20190106
|
[11] |
陆虹, 翟盘茂, 覃卫坚, 等.低温雨雪过程的粒子群-神经网络预报模型.应用气象学报, 2015, 26(5):513-524. doi: 10.11898/1001-7313.20150501
|
[12] |
Cramer S, Kampouridis M, Freitas A A, et al.An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives.Expert Systems with Applications, 2017, 85:169-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=735d0c80638ec5425f3723b1b85da0b0
|
[13] |
王在文, 郑祚芳, 陈敏, 等.支持向量机非线性回归方法的气象要素预报.应用气象学报, 2012, 23(5):562-570. http://qikan.camscma.cn/jamsweb/article/id/20120506
|
[14] |
Ketkar N.Deep Learning with Python.Shelter Island:Manning, 2017.
|
[15] |
Kamilaris A, Prenafeta-Boldú F X.Deep learning in agriculture:A survey.Computers and Electronics in Agriculture, 2018, 147:70-90.
|
[16] |
Géron A.Hands-on Machine Learning with Scikit-Learn and TensorFlow:Concepts, Tools, and Techniques to Build Intelligent Systems.Sebastopol:O'Reilly Media, 2017.
|
[17] |
Bishop C M.Pattern Recognition and Machine Learning.New York:Springer, 2006.
|
[18] |
Alpaydin E.Introduction to Machine Learning.London:MIT Press, 2009.
|
[19] |
Murphy K P.Machine Learning:A Probabilistic Perspective.London:MIT Press, 2012.
|
[20] |
Witten I H, Frank E, Hall M A, et al.Data Mining:Practical Machine Learning Tools and Techniques.Cambridge:Morgan Kaufmann, 2016.
|
[21] |
LeCun Y, Bengio Y, Hinton G.Deep learning.Nature, 2015, 521(7553):436-444. http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201309002
|
[22] |
Schmidhuber J.Deep learning in neural networks:An overview.Neural Networks, 2015, 61:85-117. http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-jsjkx201805002
|
[23] |
Goodfellow I, Bengio Y, Courville A.Deep Learning.London:MIT Press, 2016.
|
[24] |
Duro D C, Franklin S E, Dubé M G.A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery.Remote Sens Environ, 2012, 118:259-272. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=63b40fc5e46bc9dfd5a70c109ccd2768
|
[25] |
李颖, 李耀辉, 王金鑫, 等.SVM和ANN在多光谱遥感影像分类中的比较研究.海洋测绘, 2016, 36(5):19-22. http://d.old.wanfangdata.com.cn/Periodical/hych201605005
|
[26] |
戴建国, 张国顺, 郭鹏, 等.基于无人机遥感可见光影像的北疆主要农作物分类方法.农业工程学报, 2018, 34(18):122-129. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201818015
|
[27] |
Yu L, Liang L, Wang J, et al.Meta-discoveries from a synthesis of satellite-based land-cover mapping research.Int J Remote Sens, 2014, 35(13):4573-4588. http://cn.bing.com/academic/profile?id=4e015c17dc918ab4238909211aa9b43d&encoded=0&v=paper_preview&mkt=zh-cn
|
[28] |
Khatami R, Mountrakis G, Stehman S V.A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes:General guidelines for practitioners and future research.Remote Sens Environ, 2016, 177:89-100. http://cn.bing.com/academic/profile?id=96b051cf9eb57ca5239035e17ee425a7&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
Pantazi X E, Moshou D, Mouazen A M, et al.Data Fusion of Proximal Soil Sensing and Remote Crop Sensing for the Delineation of Management Zones in Arable Crop Precision Farming//HAICTA, 2015: 765-776.
|
[30] |
任义方, 赵艳霞, 王春乙.河南省冬小麦干旱保险风险评估与区划.应用气象学报, 2011, 22(5):537-548. http://qikan.camscma.cn/jamsweb/article/id/20110503
|
[31] |
张蕾, 霍治国, 黄大鹏, 等.10-11月海南省瓜菜苗期湿涝风险评估与区划.应用气象学报, 2015, 26(4):432-441. doi: 10.11898/1001-7313.20150405
|
[32] |
Kussul N, Lavreniuk M, Skakun S, et al.Deep learning classification of land cover and crop types using remote sensing data.IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):778-782. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a243ddde10111fdfa7cb8af7048b24c
|
[33] |
Rodriguez-Galiano V F, Ghimire B, Rogan J, et al.An assessment of the effectiveness of a random forest classifier for land-cover classification.ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104. http://cn.bing.com/academic/profile?id=95c1ff2fdcfc4ed5bd76ee4dc65c2fd6&encoded=0&v=paper_preview&mkt=zh-cn
|
[34] |
Chen Y, Lin Z, Zhao X, et al.Deep learning-based classification of hyperspectral data.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2094-2107. http://d.old.wanfangdata.com.cn/Periodical/chxb201901008
|
[35] |
Geng J, Fan J, Wang H, et al.High-resolution SAR image classification via deep convolutional autoencoders.IEEE Geoscience and Remote Sensing Letters, 2015, 12(11):2351-2355. http://cn.bing.com/academic/profile?id=82b0b2729fdfc2650090c96f672ebb2c&encoded=0&v=paper_preview&mkt=zh-cn
|
[36] |
Chen Y, Zhao X, Jia X.Spectral-spatial classification of hyperspectral data based on deep belief network.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2381-2392. http://cn.bing.com/academic/profile?id=6165229a415110ba839e3581b2ba1bab&encoded=0&v=paper_preview&mkt=zh-cn
|
[37] |
Ruβwurm M, Korner M.Temporal Vegetation Modelling Using Long Short-term Memory Networks for Crop Identification from Medium-resolution Multi-spectral Satellite Images//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 11-19.
|
[38] |
Ienco D, Gaetano R, Dupaquier C, et al.Land cover classification via multitemporal spatial data by deep recurrent neural networks.IEEE Geoscience and Remote Sensing Letters, 2017, 14(10):1685-1689. http://cn.bing.com/academic/profile?id=1a77814e07c4898e9df95c9992317bbd&encoded=0&v=paper_preview&mkt=zh-cn
|
[39] |
Minh D H T, Ienco D, Gaetano R, et al.Deep Recurrent Neural Networks for Mapping Winter Vegetation Quality Coverage via Multi-temporal SAR Sentinel-1//arXiv Preprint arXiv: 1708.03694, 2017.
|
[40] |
Yang J, Zhao Y Q, Chan J C W.Learning and transferring deep joint spectral-spatial features for hyperspectral classification.IEEE Trans Geosci Remote Sens, 2017, 55(8):4729-4742. http://cn.bing.com/academic/profile?id=40a3f577596dcfc9e5c293c838f3621e&encoded=0&v=paper_preview&mkt=zh-cn
|
[41] |
Liakos K, Busato P, Moshou D, et al.Machine learning in agriculture:A review.Sensors, 2018, 18(8):2674. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_a52e374fd51c80a1321d9c0a1fd7a08b
|
[42] |
Cho S I, Lee D S, Jeong J Y.AE-automation and emerging technologies:Weed-plant discrimination by machine vision and artificial neural network.Biosystems Engineering, 2002, 83(3):275-280. http://cn.bing.com/academic/profile?id=5bdda1976ac9e574168fa989fd5b8c06&encoded=0&v=paper_preview&mkt=zh-cn
|
[43] |
Karimi Y, Prasher S O, Patel R M, et al.Application of support vector machine technology for weed and nitrogen stress detection in corn.Computers and Electronics in Agriculture, 2006, 51(1/2):99-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2572493c53e705cc8ddc8a7a20ed8048
|
[44] |
Binch A, Fox C W.Controlled comparison of machine vision algorithms for Rumex and Urtica detection in grassland.Computers and Electronics in Agriculture, 2017, 140:123-138. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14935e6f792c150f3b60a5c0c43eddbf
|
[45] |
Huang F J, LeCun Y.Large-scale Learning with SVM and Convolutional Nets for Generic Object Categorization//Proc Computer Vision and Pattern Recognition Conference (CVPR'06), 2006.
|
[46] |
Sharif R A, Azizpour H, Sullivan J, et al.CNN Features Off-the-shelf: An Astounding Baseline for Recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014: 806-813.
|
[47] |
Ishii T, Nakamura R, Nakada H, et al.Surface Object Recognition with CNN and SVM in Landsat 8 Images//2015 14th IAPR International Conference on Machine Vision Applications (MVA).IEEE, 2015: 341-344.
|
[48] |
王璨, 武新慧, 李志伟.基于卷积神经网络提取多尺度分层特征识别玉米杂草.农业工程学报, 2018, 34(5):144-151. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201805019
|
[49] |
Dyrmann M, Karstoft H, Midtiby H S.Plant species classification using deep convolutional neural network.Biosystems Engineering, 2016, 151:72-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc204464ad47cb64a4d6c39b0bc260e4
|
[50] |
Dyrmann M, Jφrgensen R N, Midtiby H S.RoboWeedSupport-Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network.Advances in Animal Biosciences, 2017, 8(2):842-847. http://cn.bing.com/academic/profile?id=d34989122dc0bb5d5f265d078870dd55&encoded=0&v=paper_preview&mkt=zh-cn
|
[51] |
张雪芬, 薛红喜, 孙涵, 等.自动农业气象观测系统功能与设计.应用气象学报, 2012, 23(1):105-112. http://qikan.camscma.cn/jamsweb/article/id/20120112
|
[52] |
余卫东, 杨光仙, 张志红.我国农业气象自动化观测现状与展望.气象与环境科学, 2013, 36(2):66-71. http://d.old.wanfangdata.com.cn/Periodical/hnqx201302012
|
[53] |
Steen K, Christiansen P, Karstoft H, et al.Using deep learning to challenge safety standard for highly autonomous machines in agriculture.Journal of Imaging, 2016, 2(1):6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000112839
|
[54] |
Pound M P, Atkinson J A, Townsend A J, et al.Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.Gigascience, 2017, 6(10):gix083. http://cn.bing.com/academic/profile?id=fe889f278e836c31d0c7aa4940eb0938&encoded=0&v=paper_preview&mkt=zh-cn
|
[55] |
Amara J, Bouaziz B, Algergawy A.A Deep Learning-based Approach for Banana Leaf Diseases Classification//BTW(Workshops), 2017: 79-88.
|
[56] |
Christiansen P, Nielsen L, Steen K, et al.DeepAnomaly:Combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field.Sensors, 2016, 16(11):1904. http://cn.bing.com/academic/profile?id=d200e7f2f6ae716a98ccac9a65e03ad4&encoded=0&v=paper_preview&mkt=zh-cn
|
[57] |
Yalcin H.Plant Phenology Recognition Using Deep Learning: Deep-Pheno//2017 6th International Conference on Agro-Geoinformatics.IEEE, 2017: 1-5.
|
[58] |
Jin S, Su Y, Gao S, et al.Deep learning:individual maize segmentation from terrestrial lidar data using faster R-CNN and regional growth algorithms.Frontiers in Plant Science, 2018, 9:866. http://cn.bing.com/academic/profile?id=dd1cedf529fd6333b9f4b1f90ac9e715&encoded=0&v=paper_preview&mkt=zh-cn
|
[59] |
Ubbens J R, Stavness I.Deep plant phenomics:A deep learning platform for complex plant phenotyping tasks.Frontiers in Plant Science, 2017, 8:1190. http://cn.bing.com/academic/profile?id=ed5954f1d93b9f39e5f42af4fdcb574d&encoded=0&v=paper_preview&mkt=zh-cn
|
[60] |
Xiong X, Duan L, Liu L, et al.Panicle-SEG:A robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization.Plant Methods, 2017, 13(1):104. doi: 10.1186/s13007-017-0254-7
|
[61] |
段凌凤, 熊雄, 刘谦, 等.基于深度全卷积神经网络的大田稻穗分割.农业工程学报, 2018, 34(12):202-209. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201812024
|
[62] |
张领先, 陈运强, 李云霞, 等.基于卷积神经网络的冬小麦麦穗检测计数系统.农业机械学报, 2019, 50(3):151-157. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201903015
|
[63] |
Baweja H S, Parhar T, Mirbod O, et al.Stalknet: A Deep Learning Pipeline for High-throughput Measurement of Plant Stalk Count and Stalk Width//Field and Service Robotics, 2018: 271-284.
|
[64] |
黄双萍.基于深度卷积神经网络的水稻穗瘟病检测方法.农业工程学报, 2017, 33(20):169-176. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201720021
|
[65] |
Mohanty S P, Hughes D P, Salathé M.Using deep learning for image-based plant disease detection.Frontiers in Plant Science, 2016, 7:1419. http://cn.bing.com/academic/profile?id=a4a524b0d6f5168a108f4231ea070cc8&encoded=0&v=paper_preview&mkt=zh-cn
|
[66] |
孙俊, 谭文军, 毛罕平, 等.基于改进卷积神经网络的多种植物叶片病害识别.农业工程学报, 2017, 33(19):209-215. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201719027
|
[67] |
Rahnemoonfar M, Sheppard C.Deep count:Fruit counting based on deep simulated learning.Sensors, 2017, 17(4):905. http://cn.bing.com/academic/profile?id=133cd734c67cf78e55b0dd4f6061e19b&encoded=0&v=paper_preview&mkt=zh-cn
|
[68] |
薛月菊, 黄宁, 涂淑琴, 等.未成熟芒果的改进YOLOv2识别方法.农业工程学报, 2018, 34(7):173-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201807022
|
[69] |
Chlingaryan A, Sukkarieh S, Whelan B.Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture:A review.Computers and Electronics in Agriculture, 2018, 151:61-69. http://cn.bing.com/academic/profile?id=babc719d7ac9bf700575c1e828ad8dec&encoded=0&v=paper_preview&mkt=zh-cn
|
[70] |
González S A, Frausto S J, Ojeda B W.Predictive ability of machine learning methods for massive crop yield prediction.Spanish Journal of Agricultural Research, 2014, 12(2):313-328. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8cf1762906557bcb43e318e5eb93fe47
|
[71] |
Safa B, Khalili A, Teshnehlab M, et al.Artificial Neural Networks Application to Predict Wheat Yield Using Climatic Data//Proceedings of 20th International Conference on IIPS.Iranian Meteorological Organization, 2004: 1-39.
|
[72] |
Irmak A, Jones J W, Batchelor W D, et al.Artificial neural network model as a data analysis tool in precision farming.Transactions of the ASABE, 2006, 49(6):2027-2037. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72de5b988554a1c4d08b46716cfb1183
|
[73] |
Jaikla R, Auephanwiriyakul S, Jintrawet A.Rice Yield Prediction Using a Support Vector Regression Method//2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology.IEEE, 2008, 1: 29-32.
|
[74] |
Fortin J G, Anctil F, Parent L É, et al.Site-specific early season potato yield forecast by neural network in Eastern Canada.Precision Agriculture, 2011, 12(6):905-923. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0215c3e59d9739c5654f3f04f0ab22db
|
[75] |
Ruβ G.Data Mining of Agricultural Yield Data: A Comparison of Regression Models//Industrial Conference on Data Mining, 2009: 24-37.
|
[76] |
郭建平.农业气象灾害监测预测技术研究进展.应用气象学报, 2016, 27(5):620-630. doi: 10.11898/1001-7313.20160510
|
[77] |
王春乙, 张继权, 霍治国, 等.农业气象灾害风险评估研究进展与展望.气象学报, 2015, 73(1):1-19. http://d.old.wanfangdata.com.cn/Periodical/njzfgw201912211
|
[78] |
陈怀亮, 邓伟, 张雪芬, 等.河南小麦生产农业气象灾害风险分析及区划.自然灾害学报, 2006, 15(1):135-143. http://d.old.wanfangdata.com.cn/Periodical/zrzhxb200601022
|
[79] |
侯英雨, 张蕾, 吴门新, 等.国家级现代农业气象业务技术进展.应用气象学报, 2018, 29(6):641-656. doi: 10.11898/1001-7313.20180601
|
[80] |
王馥棠.中国气象科学研究院农业气象研究50年进展.应用气象学报, 2006, 17(6):778-785. http://qikan.camscma.cn/jamsweb/article/id/200606126
|
[81] |
Park S, Im J, Jang E, et al.Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions.Agric For Meteorol, 2016, 216:157-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43030a849e7bd986e86fab24c9eb25a9
|
[82] |
Jiang Z, Liu C, Hendricks N P, et al.Predicting County Level Corn Yields Using Deep Long Short Term Memory Models//arXiv Preprint arXiv: 1805.12044, 2018.
|
[83] |
Kuwata K, Shibasaki R.Estimating Crop Yields with Deep Learning and Remotely Sensed Data//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).IEEE, 2015: 858-861.
|
[84] |
Kim N, Lee Y W.Machine learning approaches to corn yield estimation using satellite images and climate data:A case of Iowa State.Korean Soc Surv, Geodesy, Photogramm Cartogr, 2016, 34(4):383-390. http://cn.bing.com/academic/profile?id=a3c950a92a803bface66095866f9c6ed&encoded=0&v=paper_preview&mkt=zh-cn
|
[85] |
You J, Li X, Low M, et al.Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data//Thirty-First AAAI Conference on Artificial Intelligence, 2017: 4559-4565.
|
[86] |
Wang A X, Tran C, Desai N, et al.Deep Transfer Learning for Crop Yield Prediction with Remote Sensing Data//Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies.ACM, 2018: 50.
|
[87] |
Yang F, White M A, Michaelis A R, et al.Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine.IEEE Trans Geosci Remote Sens, 2006, 44(11):3452-3461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=834cdec1dc38d9d945ca0ef913093851
|
[88] |
Jung M, Reichstein M, Ciais P, et al.Recent decline in the global land evapotranspiration trend due to limited moisture supply.Nature, 2010, 467(7318):951-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0444847b202d8adf40ee1fc20f92457
|
[89] |
Patil A P, Deka P C.An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs.Computers and Electronics in Agriculture, 2016, 121:385-392. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=987eafa89c7a7370415dd34c1e282aa7
|
[90] |
Mehdizadeh S, Behmanesh J, Khalili K.Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration.Computers and Electronics in Agriculture, 2017, 139:103-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41974eeab7db7c5237a5994cc3a31f95
|
[91] |
Baghdadi N, Cresson R, El Hajj M, et al.Estimation of soil parameters over bare agriculture areas from C-band polarimetric SAR data using neural networks.Hydrology and Earth System Sciences, 2012, 16:1607-1621. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_cf9e8654cb4b3527b598a7e11229ff54
|
[92] |
Srivastava P K, Han D, Ramirez M R, et al.Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application.Water Resources Management, 2013, 27(8):3127-3144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=223095b90085eb596dd1283a25decf31
|
[93] |
Nahvi B, Habibi J, Mohammadi K, et al.Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature.Computers and Electronics in Agriculture, 2016, 124:150-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43560fb1f5eab8082f51ca0ead46673c
|
[94] |
Morellos A, Pantazi X E, Moshou D, et al.Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy.Biosystems Engineering, 2016, 152:104-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c30b8c69a13f97a091c9be62c6731eeb
|
[95] |
Ali I, Greifeneder F, Stamenkovic J, et al.Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data.Remote Sensing, 2015, 7(12):16398-16421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000123473
|
[96] |
Prasad R, Pandey A, Singh K P, et al.Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks:A comparison of different transfer functions.Advances in Space Research, 2012, 50(3):363-370. http://cn.bing.com/academic/profile?id=e038e4a13edc2eb4d91b2f2a927ea0c5&encoded=0&v=paper_preview&mkt=zh-cn
|
[97] |
Jia M, Tong L, Chen Y, et al.Rice biomass retrieval from multitemporal ground-based scatterometer data and RADARSAT-2 images using neural networks.Journal of Applied Remote Sensing, 2013, 7(1):073509. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231748843/
|
[98] |
Wang L, Zhou X, Zhu X, et al.Estimation of biomass in wheat using random forest regression algorithm and remote sensing data.The Crop Journal, 2016, 4(3):212-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004535464
|
[99] |
Mao H, Meng J, Ji F, et al.Comparison of machine learning regression algorithms for cotton leaf area index retrieval using Sentinel-2 spectral bands.Applied Sciences, 2019, 9:1459. http://cn.bing.com/academic/profile?id=92517f63e1df89987d961a2a87a7fb7e&encoded=0&v=paper_preview&mkt=zh-cn
|
[100] |
Liu S F, Liou Y A, Wang W J, et al.Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures.IEEE Trans Geosci Remote Sens, 2002, 40(6):1260-1268. http://cn.bing.com/academic/profile?id=769d79a5431d4162ff15c4dcf7691bfc&encoded=0&v=paper_preview&mkt=zh-cn
|
[101] |
Yang X H, Huang J F, Wu Y P, et al.Estimating biophysical parameters of rice with remote sensing data using support vector machines.Science China Life Sciences, 2011, 54(3):272-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ec201103011
|
[102] |
Abdel-Rahman E M, Ahmed F B, Ismail R.Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data.Int J Remote Sens, 2013, 34(2):712-728. http://cn.bing.com/academic/profile?id=d049a17cff6d60501e13ae57b44db783&encoded=0&v=paper_preview&mkt=zh-cn
|
[103] |
Van Wittenberghe S, Verrelst J, Rivera J P, et al.Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset.Journal of Photochemistry and Photobiology B(Biology), 2014, 134:37-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f455c1ffb3b601f7c7600b074571f50
|
[104] |
Maimaitijiang M, Ghulam A, Sidike P, et al.Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine.ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 134:43-58. http://cn.bing.com/academic/profile?id=34f722792cf6dd21ddbe5118e0e581ca&encoded=0&v=paper_preview&mkt=zh-cn
|
[105] |
Song X, Zhang G, Liu F, et al.Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model.Journal of Arid Land, 2016, 8(5):734-748. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqkx201605008
|
[106] |
王璨, 武新慧, 李恋卿, 等.卷积神经网络用于近红外光谱预测土壤含水率.光谱学与光谱分析, 2018, 38(1):36-41. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201801008
|
[107] |
Ma J, Li Y, Chen Y, et al.Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network.European Journal of Agronomy, 2019, 103:117-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf88c52897c358fb478063413be69fad
|
[108] |
马浚诚, 刘红杰, 郑飞翔, 等.基于可见光图像和卷积神经网络的冬小麦苗期长势参数估算.农业工程学报, 2019, 35(5):183-189. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201905022
|
[109] |
Sehgal G, Gupta B, Paneri K, et al.Crop Planning Using Stochastic Visual Optimization//2017 IEEE Visualization in Data Science (VDS).IEEE, 2017: 47-51.
|
[110] |
Demmers T G M, Cao Y, Gauss S, et al.Neural predictive control of broiler chicken growth.IFAC Proceedings Volumes, 2010, 43(6):311-316. http://cn.bing.com/academic/profile?id=f4041185e1efe06786897c6334ee047c&encoded=0&v=paper_preview&mkt=zh-cn
|