Yang Shunan, Duan Yihong. Extremity analysis on the precipitation and environmental field of typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. DOI:  10.11898/1001-7313.20200304.
Citation: Yang Shunan, Duan Yihong. Extremity analysis on the precipitation and environmental field of typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. DOI:  10.11898/1001-7313.20200304.

Extremity Analysis on the Precipitation and Environmental Field of Typhoon Rumbia in 2018

DOI: 10.11898/1001-7313.20200304
  • Received Date: 2019-09-04
  • Rev Recd Date: 2019-12-17
  • Publish Date: 2020-05-31
  • Using a variety of observational and analytical data, the evolution of heavy precipitation, features of extreme precipitation and physical characteristics of environmental field causing extreme precipitation of Typhoon Rumbia in 2018 are analyzed. Obvious extremity can be seen with the daily rainfall at many national observational stations breaking historic records. The rainstorm process of Typhoon Rumbia can be divided into three stages: Landing, moving further inland and turning, and extratropical transition due to cold air intrusion. In the second stage, the typhoon moves very slowly and the circulation of Typhoon Rumbia stays over Henan Province for very long time, which makes the second stage the strongest precipitation period. Influenced by Typhoon Rumbia, historical daily precipitation records of many national stations in eastern Henan, southwestern Shandong and northern Shandong are broken. The observed maximum hourly precipitation is 127.7 mm, and as many as 74 stations experience an hourly precipitation of more than 80 mm. Furthermore, short-term heavy rainfall feature is very obvious, for more than 14 hours, the hourly accumulated precipitation exceeds 20 mm. Influenced by both the high precipitation efficiency and the long duration, extreme precipitation happens. Due to the atmospheric circulation characteristics of Typhoon Rumbia, there is an abnormal low pressure circulation with the standardized anomaly smaller than -4 times climate standard deviation in middle and lower troposphere, which results in extreme low-level convergence. At the same time, extreme upper divergence, induced by the combined actions of both upper tropospheric jet and high-pressure edge, can be seen in upper level. Therefore, there are obvious extreme characteristics in dynamic conditions. Compared with top 30 precipitation days in recent 30 years, 200 hPa divergence and 850 hPa convergence of Typhoon Rumbia are either close to or far beyond the historical maximum. Substantial water vapor is brought and converged in the rainstorm area continuously through the water vapor transport belt on the east side of typhoon, resulting in an extreme water vapor environmental condition. Significant extremity can be seen in many moisture-related physical parameters, such as pseudo-equivalent potential temperature, atmospheric precipitable water and vapor flux divergence, compared with both climatic mean state and historical heavy precipitation days in recent 30 years, and the extreme vapor condition lasts for up to 30 hours.
  • Fig. 1  Precipitation distribution of Typhoon Rumbia in 2018

    (a)process accumulated precipitation from 0800 BT 16 Aug to 0800 BT 21 Aug in 2018(typhoon track from 1400 BT 15 Aug to 2300 BT 20 Aug 2018 is shown by the yellow line), (b)distribution of extreme precipitation stations and daily precipitation (unit:mm) from 18 Aug to 20 Aug in 2018 (not including automatic weather stations)

    Fig. 2  24 h accumulated precipitation(the shaded) and track (the yellow line) of Typhoon Rumbia in 2018

    (a)0800 BT 16 Aug to 0800 BT 17 Aug, (b)0800 BT 17 Aug to 0800 BT 18 Aug, (c)0800 BT 18 Aug to 0800 BT 19 Aug, (d)0800 BT 19 Aug to 0800 BT 20 Aug, (e)0800 BT 20 Aug to 0800 BT 21 Aug

    Fig. 3  Characteristics of hourly precipitation of Typhoon Rumbia in 2018

    (a)the distribution of maximum hourly precipitation, (b)the duration time of hourly precipitation no less than 20 mm, (c)station numbers of different maximum hourly precipitation, (d)duration time(the histogram) its station numbers(the black line) of different hourly precipitation

    Fig. 4  Observation and ECMWF forecast of typhoon from 2000 BT 17 Aug to 2000 BT 19 Aug in 2018(initialed at 2000 BT 17 Aug 2018)

    (a)track of typhoon, (b)minimum sea-level pressure of typhoon

    Fig. 5  Wind and humidity forecast of ECMWF initialed at 2000 BT 17 Aug 2018

    (a)the predicted wind field along 34.43°N at 0800 BT 18 Aug 2018, (b)verification of atmospheric precipitable water forecast from 2000 BT 17 Aug to 0800 BT 19 Aug in 2018

    Fig. 6  Geopotential height(the contour, unit:dagpm) and standardized anomaly(the shaded) at 2000 BT 18 Aug 2018

    (a)200 hPa, (b)850 hPa(the yellow frame denotes the statistical area of typhoon track in Fig. 7)

    Fig. 7  Features of typhoon passing through the area of 31.2-36.8°N, 111.7-118.3°E (the yellow frame in Fig. 6b) from 1949 to 2018(★ is Typhoon Rumbia in 2018)

    Fig. 8  Geopotential height(the blue solid line, unit:dagpm), wind(the wind barb) and divergence(the red dashed line, unit:10-6 s-1) of Typhoon Rumbia in 2018

    (a)200 hPa, 2000 BT 18 Aug 2018, (b)200 hPa, 2000 BT 19 Aug 2018, (c)850 hPa, 2000 BT 18 Aug 2018, (d)850 hPa, 2000 BT 19 Aug 2018

    Fig. 9  Comparison of physical parameters of Typhoon Rumbia in 2018(the dashed line) and top 30 precipitation days(the column) from 1988 to 2017 at Shangqiu, Jiaxiang and Guangrao

    Fig. 10  850 hPa wind(wind barb), water vapor flux(the shaded) and water vapor flux divergence (the red line, unit:10-9 g·cm-2·hPa-1·s-1) of Typhoon Rumbia in 2018

    (a)2000 BT 18 Aug, (b)2000 BT 19 Aug

    Fig. 11  Standardized anomaly of water vapor flux divergence(the shaded) of Typhoon Rumbia in 2018

    (the area circled by green line denotes 24 h accumulated precipitation no less than 50 mm from 0800 BT 18 Aug to 0800 BT 19 Aug and from 0800 BT 19 Aug to 0800 BT 20 Aug in 2018)
    (a)2000 BT 18 Aug, (b)2000 BT 19 Aug

  • [1]
    陈联寿, 徐祥德, 罗哲贤, 等.热带气旋动力学引论.北京:气象出版社, 2002.
    [2]
    Wang B, Wei M, Hua W, et al.Characteristics and possible formation mechanisms of severe storms in the outer rainbands of Typhoon Mujigae(1522).J Meteor Res, 2016, 31:612-624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e201703014
    [3]
    王淑静, 黎明, 陈高峰.解释台风暴雨落区判断的探讨.应用气象学报, 1997, 8(2):167-174. http://qikan.camscma.cn/jamsweb/article/id/19970223
    [4]
    陶诗言.中国之暴雨.北京:科学出版社, 1980.
    [5]
    Chen L, Li Y, Cheng Z.An overview of research and forecasting on rainfall associated with landfalling tropical cyclones.Adv Atmos Sci, 1980, 27(5):967-976. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz-e201005001
    [6]
    江漫, 漆梁波.1959-2012年我国极端降水台风的气候特征分析.气象, 2016, 42(10):1230-1236. http://d.old.wanfangdata.com.cn/Periodical/qx201610008
    [7]
    Chang C, Lei Y, Sui C, et al.Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since Mid-20th Century.Geophys Res Lett, 2010, DOI: 10.1029/2012GL052945.
    [8]
    任福民, 邱文玉, 吴立广, 等.我国东南沿海台风极端降水特征及成因初探.第30届中国气象学会年会, 2013. http://d.old.wanfangdata.com.cn/Conference/8188367
    [9]
    胡坚, 费亮.台风异常北上时期的天气和次天气尺度环境场特征.应用气象学报, 1990, 1(2):199-204. http://qikan.camscma.cn/jamsweb/article/id/19900228
    [10]
    程正泉, 陈联寿, 李英.应用气象学报, 2013, 24(3):257-267. http://qikan.camscma.cn/jamsweb/article/id/20130301
    [11]
    陈艳, 宿海良, 寿绍文, 等.麦莎台风造成冀东大暴雨的数值模拟和诊断分析.应用气象学报, 2008, 19(2):209-218. http://qikan.camscma.cn/jamsweb/article/id/20080237
    [12]
    Li Y, Chen L.Numerical study on impact of the boundary layer fluxes over wetland on sustention and rainfall of landfalling tropical cyclones.Acta Meteor Sinica, 2007, 21(1):34-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb-e200701004
    [13]
    叶成志, 李昀英.热带气旋"碧利斯"与南海季风相互作用的强水汽特征数值研究.气象学报, 2011, 69(3):496-507. http://www.cnki.com.cn/Article/CJFDTotal-QXXB201103010.htm
    [14]
    林文, 林长城, 李白良, 等.登陆台风麦德姆不同部位降水强度及谱特征.应用气象学报, 2016, 27(2):239-248. doi:  10.11898/1001-7313.20160212
    [15]
    杨舒楠, 陈涛, 刘建勇.两次台风暴雨冷空气影响对比分析.气象科技, 2018, 46(2):324-335. http://d.old.wanfangdata.com.cn/Periodical/qxkj201802017
    [16]
    刘建勇, 冠博, 顾思楠, 等.台风菲特暴雨诊断分析.气象科技, 2014, 42(6):1047-1056. http://d.old.wanfangdata.com.cn/Periodical/qxkj201406018
    [17]
    徐文慧, 倪允琪.登陆台风环流内的一次中尺度对流过程.应用气象学报, 2009, 20(3):267-275. http://qikan.camscma.cn/jamsweb/article/id/20090302
    [18]
    钮学新, 董加斌, 杜惠良.华东地区台风降水及影响降水因素的气候分析.应用气象学报, 2005, 16(3):402-407. http://qikan.camscma.cn/jamsweb/article/id/20050349
    [19]
    曹爱琴, 程华, 王东勇, 等.基于TRMM卫星资料的"麦莎"台风降水特征分析.中国农学通报, 2016, 32(26):143-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201626026
    [20]
    朱龙彪, 郑铮, 何彩芬.0414号台风"云娜"多普勒雷达探测.应用气象学报, 2005, 16(4):500-508. http://qikan.camscma.cn/jamsweb/article/id/20050463
    [21]
    屈右铭, 蔡荣辉, 朱立娟.云分析系统在台风莫拉菲数值模拟中的应用.应用气象学报, 2012, 23(5):551-561. http://qikan.camscma.cn/jamsweb/article/id/20120505
    [22]
    孙军, 张福青.中国日极端降水和趋势.中国科学(地球科学), 2017, 47(12):1469-1482. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201712009
    [23]
    Hart R, Grumm R.Using normalized climatological anomalies to rank synoptic-scale events objectively.Mon Wea Rev, 2001, 129:2426-2442. http://cn.bing.com/academic/profile?id=b6925b3fd5766b238c207b2e36cacf41&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    Junker N, Grumm R, Hart R, et al.Use of normalized anomaly fields to anticipate extreme rainfall in the mountains of Northern California.Wea Forecasting, 2008, 23:336-356. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bbed793fe5663e5ee3603fa088b559a4
    [25]
    孙军, 谌芸, 杨舒楠, 等.北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考.气象, 2012, 38(10):1267-1277. doi:  10.7519/j.issn.1000-0526.2012.10.013
  • 加载中
  • -->

Catalog

    Figures(11)

    Article views (3502) PDF downloads(130) Cited by()
    • Received : 2019-09-04
    • Accepted : 2019-12-17
    • Published : 2020-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint