Wei Wanyi, Ma Shuqing, Yang Ling, et al. Ground clutter detection algorithm for array weather radar at Changsha airport. J Appl Meteor Sci, 2020, 31(3): 339-349. DOI:   10.11898/1001-7313.20200308.
Citation: Wei Wanyi, Ma Shuqing, Yang Ling, et al. Ground clutter detection algorithm for array weather radar at Changsha airport. J Appl Meteor Sci, 2020, 31(3): 339-349. DOI:   10.11898/1001-7313.20200308.

Ground Clutter Detection Algorithm for Array Weather Radar at Changsha Airport

DOI: 10.11898/1001-7313.20200308
  • Received Date: 2019-11-01
  • Rev Recd Date: 2020-01-03
  • Publish Date: 2020-05-31
  • In order to obtain more detailed small-scale weather system data, Meteorological Observation Center of China Meteorological Administration (CMA) designed and developed X-band array weather radar (AWR), cooperating with relevant manufacturers. In March of 2018, the first prototypeis deployed at Changsha Airport for field experiments. Combing advantages of networked radars and a distributed phased array technology, the AWR has a highly coordinated scanning mode and high spatial and temporal resolutions to acquire fine echo intensity and wind field data. Compared with conventional parabolic antenna weather radars, a phased array antenna has wider beams and stronger side lobes, so that more ground clutter will appear in radar echoes. If the ground clutter cannot be effectively detected and removed, the accuracy of radar products will be affected seriously.Data collected by the X-band AWR at Changsha Airport are used to study the ground clutter detection algorithm for the AWR. According to the research progress all over the world, characteristic parameters of reflectivity factors, radial velocity and velocity spectrum width are extracted. In addition, time variability of reflectivity factor (TVR), a new parameter, is added due to the high temporal and spatial resolution of the AWR. Based on analyzing statistical characteristics of each feature parameter, membership functions are determined. The contribution of TVR to the clutter detection algorithm and the performance of the algorithm on different weather conditions are analyzed. Results show that the accuracy of ground clutter detection for Changsha Airport AWR can be maximally increased by 4% by adding TVR, and the error rate of detecting the precipitation echo as clutter echo can be decreased by 2%. The accuracy of the proposed ground clutter detection algorithm reaches 96% in the detection of ground clutter when no precipitation processes happen. In the precipitation weather, the accuracy is 92%, and the error rate of detecting the precipitation echo as clutter echo is about 10%. The algorithm can basically detect and remove the ground clutter echoes from precipitation echoes.

  • Fig. 1  Intensity echo of isolated point before filtering(a) and after filtering(b)

    Fig. 2  Probability distributions of ground clutter and precipitation echo

    (a)MDVE, (b)MDSW, (c)TDBZ, (d)GDBZ, (e)SPIN, (f)TVR

    Fig. 3  Membership functions of ground clutter detection

    (a)MDVE, (b)TDBZ, (c)GDBZ, (d)SPIN, (e)TVR

    Fig. 4  The echo intensity of subarray 1 at 1.4° elevation angle at 1027 BT 31 Jul 2019 (the distance between adjacent rang rings is 5 km) (a)before ground clutter detection, (b)after ground clutter detection

    Fig. 5  The echo intensity and radial velocity of subarray 1 at 1.4°elevation angle at 1517 BT 21 Jun 2019 (the distance between adjacent range rings is 5 km) (a)echo intensity before ground clutter detection, (b)echo intensity after ground clutter detection, (c)radial velocity before ground clutter detection, (d)radial velocity after ground clutter detection

    Fig. 6  The echo intensity and radial velocity of subarray 2 at 1.4°elevation angle at 1357 BT 21 Jul 2019 (the distance between adjacent range rings is 5 km) (a)echo intensity before ground clutter detection, (b)echo intensity after ground clutter detection, (c)radial velocity before ground clutter detection, (d)radial velocity after ground clutter detection

    Fig. 7  The echo intensity and radial velocity of subarray 2 at 2.8° elevation angle at 1357 BT 21 Jul 2019 (the distance between adjacent range rings is 5 km) (a)echo intensity before ground clutter detection, (b)echo intensity after ground clutter detection, (c)radial velocity before ground clutter detection, (d)radial velocity after ground clutter detection

    Table  1  Accuracy of ground clutter detection and error rate of precipitation detection

    阈值 地物识别准确率/% 降水识别误判率/%
    采用TVR 未采用TVR 采用TVR 未采用TVR
    0.40 96 93 12 14
    0.45 91 87 10 11
    0.50 80 80 7 8
    0.55 75 72 4 4
    0.60 64 63 3 3
    DownLoad: Download CSV

    Table  2  Accuracy of ground clutter detection algorithm under no precipitation condition

    子阵 地物识别准确率/%
    1 96
    2 93
    3 94
    DownLoad: Download CSV

    Table  3  Accuracy of ground clutter detection and error rate of precipitation detection under mixed prcipitation condition

    子阵 地物识别准确率/% 降水识别误判率/%
    1 94 9
    2 92 10
    3 91 10
    DownLoad: Download CSV

    Table  4  Accuracy of ground clutter detection and error rate of precipitation detection under convective precipitation condition

    子阵 地物识别准确率/% 降水识别误判率/%
    1 92 10
    2 91 12
    3 94 10
    DownLoad: Download CSV
  • [1]
    Smith P.Siting Considerations for Weather Radars//Preprints, 15th Conference on Radar Meteorology.Champaign-Urbana, IL, American Meteorological Society, 1972: 99-100.
    [2]
    Mann D, Evans J E, Merritt M W.Clutter Suppression for Low Altitude Wind Shear Detection by Doppler Weather Radars//Preprints, 23rd Conference on Radar Meteorology, Snowmass, CO, American Meteorological Society, 1986: R9-R13.
    [3]
    Michelson D B, Andersson T.Identification and Suppression of Anomalous Propagation Echoes in Two-dimensional Radar Images//Preprints, 27th International Conference on Radar Meteorology, Vail, CO, American Meteorological Society, 1995: 665-658.
    [4]
    Torres S, Zrnic D.Ground clutter canceling with a regression filter.J Atmos Ocean Tech, 1999, 16(10):1364-1372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wQ0z/bjrMeCV3n6F1KbR4lb3tZ8RkExHthP2NiSYQYk=
    [5]
    Passarelli R E.Autocorrelation Techniques for Ground Clutter Rejection//Preprints, 20th Conference on Radar Meteorology, Boston, MA, American Meteorological Society, 1981: 308-313.
    [6]
    Schmid W, Hogl D, Joss J.Test of Clutter Suppression Techniques in the Swiss Alps//Preprints, 25th InternationalConference on Radar Meteorology, Paris, France, American Meteorological Society, 1991: 875-878.
    [7]
    Siggia A D, Passarelli R E.Gaussian Model Adaptive Processing (GMAP) for Improved Ground Clutter Cancellation and Moment Calculation//Preprints, 3rd European Conference on Radar in Meteorology and Hydrology, Visby, Gotland, Sweden, ERAD, 2004: 67-73.
    [8]
    Li Y, Zhang G, Doviak R J, et al.A new approach to detect ground clutter mixed with weather signals.IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):2373-2387. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1f84041aa2495aa71f72efc07c158ee0
    [9]
    Steiner M, SmithJ.Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data.J Atmos Ocean Tech, 2002, 19(5):673-686. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21ba06b231021e0736bfd5e95a5ed986
    [10]
    Zhang J, Wang S, Clarke B.WSR-88D Reflectivity Quality Control Using Horizontal and Vertical Reflectivity Structure//Preprints, 11th Conferenceon Aviation, Range and Aerospace Meteorology, Hyannis, MA, American Meteorological Society, 2004: 5.
    [11]
    Lakshmanan V, Hondl K, Stumpf G, et al. Quality Control of Weather Radar Data Using Texture Features and a Neural Network//Preprints, 31st Conference on Radar Meteorology, Seattle, Washington. American Meteorological Society, 2003: 522-525.
    [12]
    Lakshmanan V, Fritz A, Smith T, et al.Anautomated technique to quality control radar reflectivity data.J Appl Meteorol Climatol, 2007, 46(3):288-305. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.383.6893
    [13]
    Kessinger C, Ellis S, Vanandel J, et al.The AP Clutter Mitigation Scheme for the WSR-88D//Preprints, 31st Conference on Radar Meteorology, Seattle, Washington.American Meteorological Society, 2003: 526.
    [14]
    Ferrer M B, Torres D S, Alexandri C C, et al.A fuzzy logic technique for identifying nonprecipitatingechoes in radar scans.J Atmos Ocean Tech, 2006, 23(9):1157-1180. doi:  10.1175/JTECH1914.1
    [15]
    Cho Y H, Lee G W, Kim K E, et al.Identification and removal ofground echoes and anomalous propagation using the characteristics of radar echoes.J Atmos Ocean Tech, 2006, 23(9):1206-1222. doi:  10.1175/JTECH1913.1
    [16]
    刘黎平, 吴林林, 杨引明.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析.气象学报, 2007, 65(2):252-260. http://d.old.wanfangdata.com.cn/Periodical/qxxb200702011
    [17]
    江源, 刘黎平, 庄薇.多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报, 2009, 20(2):203-213. http://qikan.camscma.cn/jamsweb/article/id/20090210
    [18]
    李丰, 刘黎平, 王红艳, 等.S波段多普勒天气雷达非降水气象回波识别.应用气象学报, 2012, 23(2):147-158. http://qikan.camscma.cn/jamsweb/article/id/20120203
    [19]
    李丰, 刘黎平, 王红艳, 等.C波段多普勒天气雷达地物识别方法.应用气象学报, 2014, 25(2):158-167. http://qikan.camscma.cn/jamsweb/article/id/20140205
    [20]
    Ruiz J J, Miyoshi T, Satoh S, et al.Aquality control algorithm for the Osaka phased array weather radar.SOLA, 2015, 11:48-52. https://www.jstage.jst.go.jp/article/sola/11/0/11_2015-011/_article/-char/ja/
    [21]
    刘黎平, 吴翀, 汪旭东, 等.X波段一维扫描有源相控阵天气雷达测试定标方法.应用气象学报, 2015, 26(2):129-140. doi:  10.11898/1001-7313.20150201
    [22]
    吴翀, 刘黎平, 汪旭东, 等.相控阵雷达扫描方式对回波强度测量的影响.应用气象学报, 2014, 25(4):406-414. http://qikan.camscma.cn/jamsweb/article/id/20140403
    [23]
    杨金红, 高玉春, 程明虎, 等.相控阵天气雷达波束特性.应用气象学报, 2009, 20(1):119-123. http://qikan.camscma.cn/jamsweb/article/id/20090116
    [24]
    马舒庆, 陈洪滨, 王国荣, 等.阵列天气雷达设计与初步实现.应用气象学报, 2019, 30(1):3-14. doi:  10.11898/1001-7313.20190101
    [25]
    程周杰, 刘宪勋, 朱亚平.双偏振雷达对一次水凝物相态演变过程的分析.应用气象学报, 2009, 20(5):594-601. http://qikan.camscma.cn/jamsweb/article/id/20090511
    [26]
    赵瑞金, 刘黎平, 张进.硬件故障导致雷达回波错误数据质量控制方法.应用气象学报, 2015, 26(5):578-589. doi:  10.11898/1001-7313.20150507
    [27]
    张秉祥, 李国翠, 刘黎平, 等.基于模糊逻辑的冰雹天气雷达识别算法.应用气象学报, 2014, 25(4):415-426. http://qikan.camscma.cn/jamsweb/article/id/20140404
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(4)

    Article views (3849) PDF downloads(77) Cited by()
    • Received : 2019-11-01
    • Accepted : 2020-01-03
    • Published : 2020-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint