Xu Shuyang, Wu Chong, Liu Liping. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. DOI:   10.11898/1001-7313.20200309.
Citation: Xu Shuyang, Wu Chong, Liu Liping. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. DOI:   10.11898/1001-7313.20200309.

Parameter Improvements of Hydrometeor Classification Algorithm for the Dual-polarimetric Radar

DOI: 10.11898/1001-7313.20200309
  • Received Date: 2019-12-10
  • Rev Recd Date: 2020-02-20
  • Publish Date: 2020-05-31
  • Most of recent hydrometeor classification schemes for dual-polarimtric radar are based on fuzzy logic. Due to the lack of true value of hydrometeors, it is difficult to verify whether classifications are right or not. Therefore, three methods are proposed, cumulative value test, algorithm sensitivity test and hydrometeors' distribution test. Cumulative value test is used to inspect the ability of classifying and distinguishing. When input data contains system deviation and noise, the output classification would also contain system deviation and noise. Hence, a method is proposed to test the sensitivity of system deviation and noise. Hydrometeor distribution test is to analyze whether the hydrometeor distribution is temporal and spatial continuous. Through these tests the reliability and stability of the algorithm are analyzed, and key factors which affect the classification can be found out. Using observations of precipitation processes in Guangzhou in spring and summer from 2016 to 2017, the efficiency of S-band dual-polarization doppler radar is examined. Main results show that the classifying hydrometeor relies on the membership function. Using cumulative value test, some hydrometeors are found out with inappropriate membership function. These membership functions are not consistent with real characteristics of hydrometeors, which are ground clutter (including that due to anomalous propagation), biological scatters, dry aggregated snow, crystals of carious orientations, light and moderate rain, and a mixture of rain and hail. The way to modify these membership functions is based on hydrometeor statistic characteristics. Another insufficiency of membership function is to distinguish similar hydrometeors, such as crystals of various orientations with dry aggregated snow and heavy rain with mixture of rain and hail. The method to modify membership function's distinguishing ability is increasing parametric weights which has stronger discriminating ability. To ensure every hydrometeor has more than 90% stable results, the error of Zh is between -0.5 dB and +0.5 dB, that of ZDR is between -0.1 dB and +0.1 dB, that of ρhv is less than 0.02, and that of KDP is between -0.3 dB and +0.9 dB. Moreover, data quality of Zh and ZDR is more important than other parameters, system deviation is more influencing than noise. After hydrometeor distribution test, it is found that heavy rain may be misclassified as mixture of rain and hail. The spatial consistency correction method is to check whether the distribution of rain and hail mixture in a certain space is continuous.

  • Fig. 1  Algorithm sensitivity to data error

    (a)sensitivity to Zh system deviation, (b)sensitivity to ZDR system deviation, (c)sensitivity to Zh artificial noise, (d)sensitivity to ZDR artificial noise

    Fig. 2  Distribution of hydrometeor heights from 0800 BT to 1700 BT on 21 Apr 2017 (the shaded denotes the frequency)

    Fig. 3  Zh and hdyrometeors' horizontal and vertical structure at 1354 BT 21 Apr 2017

    (a)Zh horizontal structure, (b)hdyrometeor horizontal structure, (c)Zh vertical structure, (d)hdyrometeor vertical structure

    Fig. 4  Hydrometeor variable feature and improvement of membership function(the shaded denotes the frequency)

    (a)Zh-ρhv feature for biological scatterers, (b)σZh-σФDP feature for biological scatterers, (c)Zh-ρhv feature for ground clutter, including that due to anomalous propagation, (d)σZh-σФDP feature for ground clutter, including that due to anomalous propagation, (e)Zh-ZDR feature for crystals of various orientations(the orange line) and dry aggregated snow(the black line), (f)Zh-ρhv feature for crystals of various orientations and dry aggregated snow, (g)Zh-ZDR feature for a mixture of rain and hail, (h)Zh-KDR feature for a mixture of rain and hail

    Fig. 5  Variability of A and ΔA for crystals, heavy rain and a mixture of rain and hail after changing ZDR weight

    Table  1  Periods and characteristics of precipitation samples

    云的特征 时段
    层状云 2016-06-04—05
    层状云加对流云 2017-03-18—20
    2017-04-12—13
    线状对流单体 2017-04-26—27
    零散对流单体 2017-03-07—09
    2017-03-25—26
    2017-03-29—30
    2017-05-07—08
    对流单体合并 2017-04-11—12
    2017-04-19—20
    飑线 2017-05-04—05
    2017-03-31—04-01
    2017-05-08—09
    DownLoad: Download CSV

    Table  2  Distribution of A and proportion of ΔA ≤ 0.1

    相态 0≤A < 0.3 0.3≤A < 0.7 0.7≤A≤1 ΔA≤0.1 A2主要相态
    地物回波 10.40% 65.95% 23.65% 44.61% 晴空回波
    晴空回波 12.75% 76.80% 10.45% 19.29% 地物回波
    干雪 18.29% 26.09% 55.62% 21.37% 冰晶
    湿雪 0.02% 38.77% 61.21% 11.78% 干雪
    冰晶 15.64% 62.48% 21.88% 35.49% 干雪
    0.00% 20.93% 79.07% 22.66% 冰晶
    大雨滴 1.86% 45.66% 52.48% 33.05% 小到中雨
    小到中雨 17.33% 39.57% 43.10% 20.70% 大雨
    大雨 0.04% 31.99% 67.96% 37.25% 冰雹
    冰雹 0.11% 76.86% 23.03% 48.08% 大雨
    DownLoad: Download CSV

    Table  3  Insufficiency of hydrometeor classification results

    识别效果的不足 冰雹 大雨 冰晶 干雪 地物 晴空
    隶属函数不合理
    相态区分度不足
    Zh误差敏感
    ZDR误差敏感
    空间分布异常
    DownLoad: Download CSV

    Table  4  Membership functions before and after modification

    相态 偏振参量 原隶属函数 新隶属函数
    地物 Zh/dBZ (15, 20, 70, 80) (-19, -16, -2.5, 1.5)
    ρhv (0.4, 0.6, 0.9, 0.95) (0.43, 0.48, 0.85, 0.95)
    σZh/dBZ (2, 4, 10, 15) (0.5, 1.0, 4.5, 6.5)
    σФDP/(°) (30, 40, 100, 120) (15, 35, 125, 136)
    晴空回波 Zh/dBZ (5, 10, 20, 30) (-5, -3, 4.5, 6.5)
    ρhv (0, 2, 10, 12) (0.5, 0.6, 0.83, 0.9)
    σФDP/(°) (8, 10, 100, 120) (15, 23, 103, 120)
    干雪 ZDR/dB (-0.3, 0.0, 0.3, 0.6) (-0.5, -0.3, 0.3, 0.6)
    ρhv (0.95, 0.98, 1.00, 1.01) (0.94, 0.97, 1.00, 1.01)
    冰晶 ρhv (0.95, 0.98, 1.00, 1.01) (0.94, 0.97, 1.00, 1.01)
    大雨 KDP/dB (g1-1, g1, g2, g2+1) (g1+6, g1+7, g2+1, g2+2)
    冰雹 ZDR/dB (-0.3, 0.0, f1, f1+0.5) (-1.3, -1, f1, f1+0.5)
    KDP/dB (-10, -4, g1, g1+1) (-10, -4, g1+6, g1+7)
    DownLoad: Download CSV

    Table  5  Proportion and height of misclassified a mixture of rain and hail

    云类型 时段 订正冰雹占比/% 被订正冰雹的平均高度/m 冰雹的平均高度/m
    层状云加对流云 2017-03-18—20 10.73 763.52 1886.25
    2017-04-12—13 23.92 889.94 4084.63
    线状对流单体 2017-04-26—27 8.45 17916.59 2877.42
    零散对流单体 2017-03-07—09 24.71 647.47 1464.55
    2017-03-25—26 17.21 1419.22 3115.25
    2017-03-29—30 18.82 1965.07 2872.65
    2017-05-07—08 19.97 1593.02 2155.58
    对流单体合并 2017-04-11—12 8.81 840.62 2441.58
    2017-04-19—20 8.98 1520.22 4328.00
    飑线 2017-05-04—05 16.71 1456.96 3321.23
    2017-03-31—04-01 0.36 1978.03 2697.98
    2017-05-08—09 8.24 1112.96 3506.09
    DownLoad: Download CSV
  • [1]
    王洪, 孔凡铀, Jung Youngsun, 等.面向资料同化的S波段双偏振雷达质量控制.应用气象学报, 2018, 29(5):546-558. doi:  10.11898/1001-7313.20180504
    [2]
    曹杨, 陈洪滨, 苏德斌.C波段双线偏振天气雷达零度层亮带识别和订正.应用气象学报, 2018, 29(1):84-96. doi:  10.11898/1001-7313.20180108
    [3]
    阮征, 李淘, 金龙, 等.大气垂直运动对雷达估测降水的影响.应用气象学报, 2017, 28(2):200-208. doi:  10.11898/1001-7313.20170207
    [4]
    Straka J M, Zrnic D S.An Algorithm to Deduce Hydrometeor Types and Contents from Multiparameter Radar Data//Preprints, 26th Int Conference on Radar Meterology.Norman, Oklahoma, Amer Meteor Soc, 1993: 513-516.
    [5]
    Straka J M, Mansell E R.A bulk microphysics parameterization with multiple ice precipitation categories.J Appl Meteorol, 2005, 44:445-466. doi:  10.1175/JAM2211.1
    [6]
    Zrnic D S, Ryzhkov A V.Polarimetry for weather surveillance radars.Bull Amer Meteor Soc, 1999, 80:389-406. doi:  10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2
    [7]
    Vivekanandan J, Zrnic D S, Ellis S, et al.Cloud microphysics retrieval using S-band dual-polarization radar measurements.Bull Amer Meteor Soc, 1999, 80:381-388. doi:  10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2
    [8]
    Park H S, Ryzhkov A V, Zrnic D S, et al.The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS.Wea Forecasting, 2009, 24(3):730-748. doi:  10.1175/2008WAF2222205.1
    [9]
    Liu H, Chandrasekar V.Classification of hydrometeors based on polarimetric radar measurements:Development of fuzzy logic and neuro-fuzzy systems, and in situ verification.J Atmos Oceanic Technol, 2000, 17(2):140-164. doi:  10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2
    [10]
    Al-Sakka H, Boumahmoud A A, Béatrice F, et al.A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars.J Appl Meteor Climatol, 2013, 52(10):2328-2344. doi:  10.1175/JAMC-D-12-0236.1
    [11]
    Bechini R, Chandrasekar V.A semisupervised robust hydrometeor classification method for dual-polarization radar applications.J Atmos Oceanic Technol, 2015, 32(1):22-47. doi:  10.1175/JTECH-D-14-00097.1
    [12]
    曹俊武, 刘黎平, 葛润生.模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究.大气科学, 2005, 29(5):827-836. http://d.old.wanfangdata.com.cn/Periodical/daqikx200505015
    [13]
    Wu C, Liu L, Wei M, et al.Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China.Adv Atmos Sci, 2018, 35(3):296-316. doi:  10.1007/s00376-017-6241-0
    [14]
    顾震潮.云雾降水物理基础.北京:科学出版社, 1980:173-179.
    [15]
    石宝灵, 王红艳, 刘黎平.云南多普勒天气雷达网探测冰雹的覆盖能力.应用气象学报, 2018, 29(3):270-281. doi:  10.11898/1001-7313.20180302
    [16]
    黄先香, 俞小鼎, 炎利军, 等.广东两次台风龙卷的环境背景和雷达回波对比.应用气象学报, 2018, 29(1):70-83. doi:  10.11898/1001-7313.20180107
    [17]
    郭欣, 郭学良, 陈宝君, 等.一次大冰雹形成机制的数值模拟.应用气象学报, 2019, 30(6):651-664. doi:  10.11898/1001-7313.20190602
    [18]
    马淑萍, 王秀明, 俞小鼎.极端雷暴大风的环境参量特征.应用气象学报, 2019, 30(3):292-301. doi:  10.11898/1001-7313.20190304
    [19]
    李丰, 刘黎平, 王红艳, 等.S波段多普勒天气雷达非降水气象回波识别.应用气象学报, 2012, 23(2):147-158. http://qikan.camscma.cn/jamsweb/article/id/20120203
    [20]
    张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001:327-328.
    [21]
    丁青兰, 刘黎平, 葛润生, 等.双线偏振多普勒雷达测量精度的理论分析.应用气象学报, 2003, 24(1):30-38. http://qikan.camscma.cn/jamsweb/article/id/20030104
    [22]
    陈超, 胡志群, 胡胜, 等.广州S波段双偏振雷达数据质量初步分析.热带气象学报, 2018, 34(1):59-67. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201801006
    [23]
    Lim S, Chandrasekar V, Bringi V N.Hydrometeor classification system using dual-polarization radar measurements:Model improvements and in situ verification.IEEE Trans Geosci Remote Sens, 2005, 43(4):792-801. doi:  10.1109/TGRS.2004.843077
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(5)

    Article views (4106) PDF downloads(225) Cited by()
    • Received : 2019-12-10
    • Accepted : 2020-02-20
    • Published : 2020-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint