Lin Xiaomeng, Wei Yinghua, Chen Hong, et al. The effect assessment of wind field inversion based on WPR in precipitation. J Appl Meteor Sci, 2020, 31(3): 361-372. DOI:   10.11898/1001-7313.20200310.
Citation: Lin Xiaomeng, Wei Yinghua, Chen Hong, et al. The effect assessment of wind field inversion based on WPR in precipitation. J Appl Meteor Sci, 2020, 31(3): 361-372. DOI:   10.11898/1001-7313.20200310.

The Effect Assessment of Wind Field Inversion Based on WPR in Precipitation

DOI: 10.11898/1001-7313.20200310
  • Received Date: 2019-12-10
  • Rev Recd Date: 2020-02-20
  • Publish Date: 2020-05-31
  • Wind profile radar(WPR), taking atmospheric turbulence of clear air as main detecting object, is the main reference tool currently for short-time forecast because of its high spatial and temporal resolution. In the past few decades, WPR spectral data processing mainly focuses on the wind spectrum estimation. In recent years, with the use of WPR data expansion, there are increasingly high demand for WPR data accuracy, but because of ground clutter and external noise, flying objects, the presence of disturbances such as precipitation and limitations of Fourier Transform method itself, there are often multiple overlapped peaks, which makes it difficult to judge the spectral meaning, resulting in large error detection products. WPR has a large dynamic reception range, so it can receive the echo of scattering of atmosphere turbulence and precipitation particles simultaneously. However, the superimposed spectrum of atmosphere and precipitation cannot be separated effectively. In the meantime, the wind field calculation is based on the hypothesis of local uniform and isotropy, which cannot be met during precipitation with great spatial variability and leads to data of WPR serious deficiency or distortion. It's of great importance to establish an effective spectral extraction programs under different weather conditions to improve the accuracy of spectral estimation for wind field data after the inversion, thereby enhancing the wind profile accuracy of radar detection.A method of WPR-HW is developed for the case of precipitation according to the principle of WPR detection and the feature of spectrum, and then the effectiveness of the method is tested using ECMWF ERA Interim data. 10 precipitation cases in Tianjin are investigated to verify the significance of wind field data processed by WPR-HW in severe convection prediction. Results show that the WPR-HW has significant advantage compared with the recent WIND method (the universal method of wind field inversion from WPR) in integrity and reliability. For the wind field data in 10 precipitation cases, the leakage rate of WIND is 25.4% while that of WPR-HW is 0. The root mean square error in wind speed of WPR-HW is 1.6 m·s-1 while that of WIND is 2.3 m·s-1. The RMSE in wind direction of WPR-HW is 22° while that of WIND is 45°. The wind field processed by WPR-HW is able to make up for the deficiency and distortion of WPR data effectively in precipitation, which thus benefit to improve the timeliness and accuracy in strong convective weather forecasting.

  • Fig. 1  Power spectrum density of one peak(a), double peaks(b) and three peaks(c)

    Fig. 2  Comparison of data processed by WPR-HW and ECMWF reanalysis data

    (a)comparison of wind speed, (b)distribution of root mean square error of wind direction

    Fig. 3  Relative bias along with height between data processed by WPR-HW and ECMWF reanalysis data

    Fig. 4  Power spectrum density of Baodi Station at 1740 BT 6 Jul 2017

    (a)north beam, (b)south beam

    Fig. 5  The barb processed by WIND(a) and WPR-HW(b) at Baodi Station during 1630—2030 BT on 6 Jul 2017

    Fig. 6  Precipitation of Baodi Station during 1630—2030 BT on 6 Jul 2017

    Fig. 7  Vertical products processed by WPR-HW at Baodi Station during 1700—1830 BT on 6 Jul 2017

    (a)time-altitude section of vertical speed, (b)time-altitude section of spectrum width

    Fig. 8  The power spectrum density of Jinghai Station at 1740 BT 13 Aug 2018

    (a)north beam, (b)south beam

    Fig. 9  The barb processed by WIND(a) and WPR-HW(b) at Jinghai Station during 1530—1830 BT on 13 Aug 2018

    Fig. 10  Vertical speed processed by WPR-HW at Jinghai Station during 1530—1830 BT on 13 Aug 2018

    Table  1  Parameters of WPR

    参数 低模式 高模式
    起始采样库的高度/m 60 600
    宝坻站终止采样库的高度/m 1200 5280
    静海站终止采样库的高度/m 1500 7080
    距离库长/m 60 120
    相干累积 100 64
    fft点数 256 512
    谱平均数 8 4
    DownLoad: Download CSV

    Table  2  Statistics of case evaluation for data processed WPR-HW

    降水日期 降水量级 数据缺失率/% WPR-HW方法反演风场特征 WPR-HW方法降水预报提前量/min
    WIND方法 WPR-HW方法
    2015-09-04 大雨 26 0 风向切变 105
    2016-06-27 小雨 20 0 风向切变 150
    2016-07-20 暴雨 28 0 边界层急流 15
    2016-08-07 大雨 30 0 边界层急流,风速辐合 60
    2017-05-22 小雨 21 0 风向切变 150
    2017-06-22 小雨 23 0 边界层急流 150
    2017-06-23 中到大雨 27 0 边界层急流,风向切变 15
    2017-07-06 暴雨 22 0 边界层急流,风速辐合 30
    2017-08-02 大雨 26 0 边界层急流 45
    2018-08-13 暴雨 31 0 风向切变,龙卷 30
    DownLoad: Download CSV
  • [1]
    郑永光, 陶祖钰, 俞小鼎.对流天气预报的一些基本问题.气象, 2007, 43(6):641-652. http://d.old.wanfangdata.com.cn/Periodical/qx201706001
    [2]
    茅懋, 戴建华, 李佰平, 等, 不同类型强对流预报产品的目标对象检验与分析评价.气象, 2006, 42(4):389-397. http://d.old.wanfangdata.com.cn/Periodical/qx201604001
    [3]
    何平.相控阵风廓线雷达.北京:气象出版社, 2006.
    [4]
    Stanley G B, Barry E S, Eduard J S, et al.The value of wimd profiler data in US weather forecasting.Bull Amer Meter Soc, 2004, 85(12):1871-1886. doi:  10.1175/BAMS-85-12-1871
    [5]
    阮征, 李淘, 金龙, 等.大气垂直运动对雷达估测降水的影响.应用气象学报, 2017, 28(2):200-208. doi:  10.11898/1001-7313.20170207
    [6]
    杨新蕊, 马舒庆, 吴蕾.UHF风廓线雷达降水数据判别方法的比较与评价.大气科学学报, 2010, 33(5):576-581. http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb201005009
    [7]
    腾志遥, 贺红兵.风廓线雷达数据质量控制方法.雷达与对抗, 2008, 1:10-15. http://d.old.wanfangdata.com.cn/Periodical/kxycf2015Z2522
    [8]
    Steiner A, Richner H.Separation of clear-air echoes from precipitation echoes in UHF wind profiler measurements.Ann Geophys, 1994, 12:497-505. http://cn.bing.com/academic/profile?id=441175a655c7e887163cdcea9b96297c&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    Mcdonald A J, Carey-SMITH T K, Hooper D A, et al.The effect of precipitation on wind-profiler clear air returns.Ann Geophys, 2004, 22:3959-3970. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7911eef43253d7f01420f0da4334bb91
    [10]
    Ralph F M, Neiman P J, Uffieux D.Precipitation identification from radar wind profiler spectral moment data:Vertical velocity histograms, velocity variance, and signal power-vertical velocity correlation.J Atmos Oceanic Tech, 1995, 13:545-599. doi:  10.1175/1520-0426%281996%29013%3C0545%3APIFRWP%3E2.0.CO%3B2
    [11]
    Schafer R, Avery S K, Gage K S, et al.Improving wind profiler-measured winds using coplanar spectral averaging.J Atmos Oceanic Technol, 2004, 21(11):1671-1678. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025574480/
    [12]
    廖菲, 邓华, 候灵.降水条件下风廓线雷达数据质量分析及处理.热带气象学报, 2016, 32(5):588-596. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201605002
    [13]
    王晓蕾.风廓线雷达探测降水云体中雨滴谱的试验研究.南京: 南京信息工程大学, 2009. http://www.cnki.com.cn/Article/CJFDTotal-GYQX201002026.htm
    [14]
    林晓萌, 何平, 黄兴友.一种抑制降水对风廓线雷达水平风干扰的方法.应用气象学报, 2015, 26(1):66-75. doi:  10.11898/1001-7313.20150107
    [15]
    尹忠海, 张沛源.利用卡尔曼滤波校准方法估算区域降水量.应用气象学报, 2005, 16(2):213-219. http://qikan.camscma.cn/jamsweb/article/id/20050226
    [16]
    何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. http://qikan.camscma.cn/jamsweb/article/id/20130305
    [17]
    孙豪, 刘黎平, 郑佳锋.不同波段垂直指向雷达功率谱密度对比.应用气象学报, 2017, 28(4):447-457. doi:  10.11898/1001-7313.20170406
    [18]
    姚文, 马颖, 高丽娜.L波段与59-701探空系统相对湿度对比分析.应用气象学报, 2017, 28(2):218-226. http://qikan.camscma.cn/jamsweb/cn/search
    [19]
    曾晓青, 薛峰, 姚丽, 等.针对模式风场的格点预报订正方案对比.应用气象学报, 2019, 30(1):49-60. doi:  10.11898/1001-7313.20190105
    [20]
    张小雯, 郑永光, 吴蕾, 等.风廓线雷达在天气业务中的应用现状与展望.气象科技, 2017, 45(2):285-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj201702013
    [21]
    刘梦娟, 刘舜.上海组网风廓线雷达数据质量评估.气象, 2016, 42(8):962-970. http://d.old.wanfangdata.com.cn/Periodical/qx201608006
    [22]
    罗红艳, 杨红龙, 卢超, 等.深圳风廓线雷达与气象梯度塔对风速观测的对比分析.广东气象, 2017, 39(6):72-76. http://d.old.wanfangdata.com.cn/Periodical/gdqx201706020
    [23]
    谭桂容, 范艺媛, 牛若芸.江淮地区强降水分型及其环流演变.应用气象学报, 2018, 29(4):396-409. doi:  10.11898/1001-7313.20180402
    [24]
    孙丽娜, 陈楠, 李妙英, 等.南京地区一次短时强降水风廓线雷达资料特征分析.陕西气象, 2017(5):13-16. http://d.old.wanfangdata.com.cn/Periodical/sxqx201705003
    [25]
    马淑萍, 王秀明, 俞小鼎.极端雷暴大风的环境参量特征.应用气象学报, 2019, 30(3):292-301. doi:  10.11898/1001-7313.20190304
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(2)

    Article views (3976) PDF downloads(133) Cited by()
    • Received : 2019-12-10
    • Accepted : 2020-02-20
    • Published : 2020-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint