Yang Xianyi, Che Huizheng, Chen Quanliang, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. DOI:   10.11898/1001-7313.20200311.
Citation: Yang Xianyi, Che Huizheng, Chen Quanliang, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. DOI:   10.11898/1001-7313.20200311.

Retrieval of Aerosol Optical Properties by Skyradiometer over Urban Beijing

DOI: 10.11898/1001-7313.20200311
  • Received Date: 2020-01-13
  • Rev Recd Date: 2020-03-15
  • Publish Date: 2020-05-31
  • Aerosol particles can scatter and absorb solar radiation and affect microphysical processes of clouds to change the earth's radiation budget. It is reported that aerosol particles not only have an impact on climate change, but also cause polluted environment and affect human health. Ground-based measurement networks such as AERONET and SKYNET are very useful and accurate ways to monitor the spatio-temporal distribution of aerosols using the sun-sky radiometric technique. Aerosol optical properties retrieved by a PREDE skyradiometer are used to analyze the variation of aerosol in Beijing from October 2018 to September 2019. Results show that aerosol optical depth at 500 nm is high from February to July, the highest value is 0.71 in June, the highest single scattering albedo is 0.96 in August and the lowest value is 0.89 in May, Ångström exponent in summer (1.11) is higher than that in spring (0.89), and the volume size distribution pattern shows typical bimodal in every month. According to the Chinese National Secondary Standards for PM2.5, pollution days are picked. It is found that pollution days only account for 17%, of which 62% are light pollution days. The statistical result of air quality in Beijing is good from October 2018 to September 2019. Aerosol optical properties and PM2.5 under pollution and clean weather conditions in Beijing are discussed. The value of PM2.5 under pollution weather condition is 2.27 times larger than that under clean weather condition, values of aerosol optical depth at 500 nm are 0.85 and 0.49 under pollution and clean weather conditions, respectively. Values of single scattering albedo are 0.96 and 0.92 under pollution and clean weather conditions, respectively. The value of Ångström exponent under pollution weather condition (1.02) is larger than that under clean weather condition (0.91) in winter while the value of Ångström exponent under pollution weather condition (0.87) is smaller than that under clean weather condition (0.90) in spring. Skyradiometer retrieved data, combined with lidar measurement and meteorological data are used to analyze a serious pollution event in winter over Beijing. The result suggests that poor meteorological conditions (low wind speed and high relative humidity), the hygroscopic growth of aerosol, aerosol secondary transformation, local emissions and regional transportation lead to this serious pollution event.

  • Fig. 1  Comparison of the aerosol optical depth observed by skyradiometer and those of MODIS in Beijing(39.933°N, 116.317°E, 105 m)

    (solid and dashed lines denote one-one line and the expected error line, respectively)

    Fig. 2  Monthly averaged variation in aerosol optical properties from skyradiometer measurements in Beijing from Oct 2018 to Sep 2019

    (a)aerosol optical depth at 500 nm, (b)single scattering albedo at 500 nm, (c)Ångströmm exponent at 440-870 nm

    Fig. 3  Monthly averaged variation in volume size distribution from skyradiometer measurements in Beijing from Oct 2018 to Sep 2019

    Fig. 4  Volume size distribution of different aerosol types in Beijing from Oct 2018 to Sep 2019

    (a)highly absorbing particles, (b)moderately absorbing particles, (c)weakly absorbing particles

    Fig. 5  Daily averaged aerosol optical depth at 500 nm and PM2.5 in Beijing from 1 Jan to 31 Jan in 2019

    (the shaded denotes pollution period)

    Fig. 6  Temporal variation of particulate concentration and meteorological elements from 8 Jan to 15 Jan in 2019

    (a)PM2.5 and PM10, (b)visibility and relative humidity

    Fig. 7  Daily averaged variation of Ångström exponent from skyradiometer in Beijing from 8 Jan to 15 Jan in 2019

    Fig. 8  Averaged volume size from skyradiometer in Beijing from 8 Jan to 15 Jan in 2019

    Fig. 9  Temporal and spatial distribution of extinction coefficient(a) and the depolarization ratio(b) at 532 nm in Beijing from 9 Jan to 14 Jan in 2019

    Table  1  Air quality rank statistics from 11 Oct 2018 to 30 Sep 2019

    PM2.5浓度/(μg·m-3) 空气质量等级 实际日数/d 仪器有效观测日数/d
    (0, 35] 171 135
    (35, 75] 123 103
    (75, 115] 轻度污染 38 24
    (115, 150] 中度污染 12 8
    (150, 250] 重度污染 11 2
    (250, 500] 严重污染 0 0
    DownLoad: Download CSV

    Table  2  Statistics of aerosol optical depth from 8 Jan to 15 Jan in 2019

    日期 波段
    400 nm 500 nm 670 nm 870 nm 1020 nm
    01-08 0.12 0.10 0.07 0.06 0.05
    01-09 0.85 0.68 0.55 0.45 0.40
    01-10 0.58 0.42 0.31 0.24 0.21
    01-11 1.13 0.89 0.70 0.57 0.51
    01-12 0.95 0.71 0.50 0.38 0.33
    01-13
    01-14 0.77 0.59 0.44 0.35 0.30
    01-15 0.16 0.15 0.13 0.12 0.11
    DownLoad: Download CSV

    Table  3  Statistics of single scattering albedo from 8 Jan to 15 Jan in 2019

    日期 波段
    400 nm 500 nm 670 nm 870 nm 1020 nm
    01-08 0.90 0.93 0.87 0.82 0.80
    01-09 0.93 0.96 0.96 0.97 0.95
    01-10 0.94 0.99 0.99 0.97 0.91
    01-11 0.92 0.98 0.96 0.95 0.92
    01-12 0.93 0.99 0.99 0.97 0.92
    01-13
    01-14 0.91 0.99 0.99 0.99 0.94
    01-15 0.83 0.84 0.82 0.84 0.84
    DownLoad: Download CSV
  • [1]
    Ackerman T P, Toon O B.Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles.Appl Opt, 1981, 20(20):3661-3667. doi:  10.1364/AO.20.003661
    [2]
    Twomey S, Piepgrass M, Wolfe T L, et al.An assessment of the impact of pollution on global cloud albedo.Tellus, 2010, 36(5):356-366. http://cn.bing.com/academic/profile?id=cc4845fb9a3dfa1645504212283302fe&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Hansen J, Sato M, Ruedy R.Radiative forcing and climate response.J Geophys Res Atmos, 1997, 102(D6):6831-6864. doi:  10.1029/96JD03436
    [4]
    Hansen J, Sato M, Ruedy R, et al.Global warming in the twenty-first century:An alternative scenario.Proceedings of the National Academy of Sciences, 2000, 97(18):9875-9880. doi:  10.1073/pnas.170278997
    [5]
    Houghton J T, Ding Y, Griggs D I, et al.Intergovernmental Panel on Climate Change (IPCC): Climate Change 2001//The Scientific Basis.New York: Cambridge University Press, 2001.
    [6]
    夏祥鳌, 王普才, 陈洪滨, 等.中国北方地区春季气溶胶光学特性地基遥感研究.遥感学报, 2005, 9(4):429-437. http://d.old.wanfangdata.com.cn/Periodical/ygxb200504014
    [7]
    Holben B N, Eck T F, Slutsker I, et al.AERONET-A federated instrument network and data archive for aerosol characterization.Remote Sens Environ, 1998, 66(1):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1929f9914d4d9718a4eb3fd42e995a55
    [8]
    Holben B N, Tanré D, Smirnov A, et al.An emerging ground-based aerosol climatology:Aerosol optical depth from AERONET.J Geophys Res Atmos, 2001, 106(D11):12067-12097. doi:  10.1029/2001JD900014
    [9]
    Che H, Yang Z, Zhang X, et al.Study on the aerosol optical properties and their relationship with aerosol chemical compositions over three regional background stations in China.Atmos Environ, 2009, 43(5):1093-1099. doi:  10.1016/j.atmosenv.2008.11.010
    [10]
    张晓春, 车慧正, 魏垚.CE-318型太阳光度计常见问题及其解决方法.气象科技, 2010, 38(1):102-106. doi:  10.3969/j.issn.1671-6345.2010.01.018
    [11]
    Prats N, Cachorro V E, Sorribas M, et al.Columnar aerosol optical properties during "El Arenosillo 2004 Summer Campaign".Atmos Environ, 2008, 42(11):2643-2653. doi:  10.1016/j.atmosenv.2007.07.041
    [12]
    Nakajima T, Yoon S C, Ramanathan V, et al.Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia.J Geophys Res, 2007, 112(24):1-23. http://cn.bing.com/academic/profile?id=e141acb13b3dae03431ee0b7545c753b&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Nakajima T, Tonna G, Rao R, et al.Use of sky brightness measurements from ground for remote sensing of particulate polydispersions.Appl Opt, 1996, 35(15):2672-2686. doi:  10.1364/AO.35.002672
    [14]
    Hashimoto M, Nakajima T, Dubovik O, et al.Development of a new data-processing method for SKYNET sky radiometer observations.Atmospheric Measurement Techniques, 2012, 5(11):2723-2737. doi:  10.5194/amt-5-2723-2012
    [15]
    Campanelli M, Estelles V, Smyth T, et al.Monitoring of Eyj-afjallajökull volcanic aerosol by the new European Skynet Radiometers (ESR) network.Atmos Environ, 2012, 48(2):33-45.
    [16]
    Estellés V, Campanelli M, Smyth T, et al.Evaluation of the new ESR network software for the retrieval of direct sun products from CIMEL CE318 and PREDE POM01 sun-sky radiometers.Atmos Chem Phys, 2012, 12(23):11619-11630. doi:  10.5194/acp-12-11619-2012
    [17]
    Xu X, Xie L, Ding G, et al.Beijing air pollution project to benefit 2008 Olympic Games.Bull Amer Meteor Soc, 2005, 86(11):1543-1544. doi:  10.1175/BAMS-86-11-1543
    [18]
    Li Z, Li C, Chen H, et al.East Asian studies of tropospheric aerosols and their impact on regional climate (EAST-AIRC):An overview.J Geophys Res, 2011, 116(4):220-237. http://cn.bing.com/academic/profile?id=d7e51b4bc6b086e79499351075f9ab76&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    Ding A J, Wang T, Thouret V, et al.Tropospheric ozone climatology over Beijing:Analysis of aircraft data from the MOZAIC program.Atmos Chem Phys, 2008, 8(1):1-13. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_232026cd1b1ca792013b7eada611e8f6
    [20]
    Che H Z.Analysis of 40 years of solar radiation data from China, 1961-2000.Geophys Res Lett, 2005, 32(6):2341-2352. doi:  10.1029-2004GL022322/
    [21]
    车慧正, 石广玉, 张小曳.北京城区大气气溶胶光学特性及其直接辐射强迫的研究.中国科学院大学学报, 2007, 24(5):699-704.
    [22]
    孙文文.北京城区大气气溶胶光学特性与区域雾霾事件分析.环境污染与防治, 2016, 38(2):1-6. http://www.cnki.com.cn/Article/CJFDTotal-HJWR201602001.htm
    [23]
    杨溯, 石广玉, 段云霞, 等.天空辐射计观测2006年春季北京城区气溶胶光学特性的研究.气候与环境研究, 2012, 17(1):20-28. doi:  10.3878/j.issn.1006-9585.2011.10012
    [24]
    王玲, 李正强, 李东辉, 等.利用太阳-天空辐射计遥感观测反演北京冬季灰霾气溶胶成分含量.遥感学报, 2013, 17(4):944-958. http://d.old.wanfangdata.com.cn/Periodical/ygxb201304018
    [25]
    颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. doi:  10.3969/j.issn.1001-7313.2010.03.001
    [26]
    毛节泰, 刘晓阳, 李成才, 等.MODIS卫星遥感北京城区气溶胶光学厚度及与地面光度计遥感的对比.应用气象学报, 2002, 13(增刊Ⅰ):127-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyqxxb2002z1014
    [27]
    李成才, 毛节泰, 刘启汉.用MODIS遥感资料分析四川盆地气溶胶光学厚度时空分布特征.应用气象学报, 2003, 14(1):1-7. doi:  10.3969/j.issn.1001-7313.2003.01.001
    [28]
    李成才, 刘启汉, 毛节泰, 等.利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染.应用气象学报, 2004, 15(6):641-650. doi:  10.3969/j.issn.1001-7313.2004.06.001
    [29]
    田华, 马建中, 李维亮, 等.中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟.应用气象学报, 2005, 16(3):322-333. doi:  10.3969/j.issn.1001-7313.2005.03.006
    [30]
    程兴宏, 徐祥德, 陈尊裕, 等.北京地区PM10浓度空间分布特征的综合变分分析.应用气象学报, 2007, 18(2):165-172. doi:  10.3969/j.issn.1001-7313.2007.02.005
    [31]
    高中明, 闭建荣, 黄建平.基于AERONET和SKYNET网观测的中国北方地区气溶胶光学特征分析.高原气象, 2013, 32(5):1293-1307. http://d.old.wanfangdata.com.cn/Periodical/gyqx201305009
    [32]
    Che H Z, Qi B, Zhao H J, et al.Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China.Atmos Chem Phys, 2018, 18(1):405-425. doi:  10.5194/acp-18-405-2018
    [33]
    王晓云, 潘莉卿, 吕伟林, 等.北京城区冬季空气污染物垂直分布与气象状况的观测分析.应用气象学报, 2001, 12(3):279-286. doi:  10.3969/j.issn.1001-7313.2001.03.003
    [34]
    贾小芳, 颜鹏, 孟昭阳, 等.2016年11-12月北京及周边重污染过程PM2.5特征.应用气象学报, 2019, 30(3):302-315. doi:  10.11898/1001-7313.20190305
    [35]
    姜江, 张国平, 高金兵.北京大气能见度的主要影响因子.应用气象学报, 2018, 29(2):188-199. doi:  10.11898/1001-7313.20180206
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (3611) PDF downloads(59) Cited by()
    • Received : 2020-01-13
    • Accepted : 2020-03-15
    • Published : 2020-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint