Luo Hui, Xiao Dixiang, Kuang Qiuming, et al. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin. J Appl Meteor Sci, 2020, 31(4): 460-470. DOI:  10.11898/1001-7313.20200408.
Citation: Luo Hui, Xiao Dixiang, Kuang Qiuming, et al. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin. J Appl Meteor Sci, 2020, 31(4): 460-470. DOI:  10.11898/1001-7313.20200408.

Radar Echo Characteristics and Recognition of Warm-sector Torrential Rain in Sichuan Basin

DOI: 10.11898/1001-7313.20200408
  • Received Date: 2019-10-10
  • Rev Recd Date: 2020-03-11
  • Publish Date: 2020-07-31
  • Based on data of real-time precipitation and weather radar during 28 torrential rain events in warm regions of Sichuan Basin, radar echo characteristics of torrential rain in early and mature stages are analyzed. Feature vectors for identifying early and mature stages of torrential rain in warm regions are constructed and the selected samples are studied by random forest machine learning method. According to the influence range, duration, and cumulative amount of precipitation, the thunderstorm group is the main part of the rainstorm in the warm region, and its development can be divided into three types.According to the burst of short-term heavy precipitation, thunderstorm groups are divided into primary and mature stages. In the early stage of the thunderstorm to the mature stage, the "in situ development type" is dominant, the "individual development type" and the "in front side trigger type" are the second. With the evolution after the maturity, the "in situ development type" and the "front side trigger type" are the main types. Convective precipitation is the main type of heavy rain in the warm area. After the first type of thunderstorm group, the combination of mature thunderstorms is the main source of thunderstorms, which moves slowly and is conducive to the generation of heavy precipitation. In front of mature thunderstorms, new thunderstorm cells are continuously generated and merged to continue spreading northward, forming a large range of precipitation. Individual development thunderstorm groups have the longest duration and a large influencing range. They are accompanied by long-term merge when moving. Among 28 processes, a large proportion appears in the northwest and has the longest duration. Echoes of these processes are in the southwest-northeast direction, which is basically consistent with the trend of the Longmen mountains in the western part of the Basin. The uplift of the topography (generating easterly wind) plays a key role in the occurrence and development of warm rainstorms. In the primary stage, the average core height and average top height of "in situ development type" thunderstorm group has a bimodal structure. Similar structure is found for "front side trigger type" in the mature stage. Multiple parameters of three types of thunderstorm groups show a unimodal distribution in the nascent and mature stages. To identify heavy rains in the warm area, feature vector is constructed using multiple parameters of the thunderstorm group, and random forest machine learning is also applied, leading to satisfying results.
  • Fig. 1  Station number of different level precipitation in different time periods

    Fig. 2  Combined reflectivity of three-type thunderstorm groups

    Fig. 3  Location of the strongest thunderstorm at 1 h interval

    Fig. 4  Probability density distribution of thunderstorm group in the height of the average core and the maximum core

    Fig. 5  Probability density distribution of thunderstorm group in the average top and the maximum top

    Fig. 6  Probability density distribution of thunderstorm group in the average and the maximum of maximum reflectivity factor

    Table  1  Characteristics of precipitation for different types

    类型降水持续时间降水范围过程累积降水过程降水总体特征
    Ⅰ型较短较小降水移动缓慢导致累积降水大,范围小,持续时间较短
    Ⅱ型较长较大较强降水相对集中,但范围不断扩大,导致影响范围大、持续时间长
    Ⅲ型最长较小降水分散,影响范围大,持续时间长
    DownLoad: Download CSV

    Table  2  Environmental parameters of typical cases

    类型过程对流有效
    位能/(J·kg-1)
    850 hPa假相当
    位温/℃
    850 hPa
    比湿/(g·kg-1)
    850 hPa
    露点/℃
    0~2 km垂直风
    切变/(m·s-1)
    20140912219083.516.3192.0
    Ⅰ型20170818277989.017.3201.2
    20170821360489.017.3201.6
    20130725374690.517.5204.6
    Ⅱ型20170716412692.618.4214.4
    20170719317890.517.6202.6
    Ⅲ型20130619231393.918.1214.4
    20170722199392.718.5217.6
    DownLoad: Download CSV

    Table  3  Recognition result

    试验序号训练样本测试样本正确识别样本初生误识别为成熟成熟误识别为初生分类识别正确率/%
    试验14751531406791.5
    试验24741541452794.2
    试验34751531387890.2
    试验444818016631192.2
    试验54731551415990.9
    试验64591691583893.5
    DownLoad: Download CSV
  • [1]
    黄士松.华南前汛期暴雨.广州:广东科技出版社, 1986:227-228.
    [2]
    何立富, 陈涛, 孔期.华南暖区暴雨研究进展.应用气象学报, 2016, 27(5):559-569. doi:  10.11898/1001-7313.20160505
    [3]
    罗建英, 廖胜石, 黄归兰, 等.广西前汛期锋前暖区暴雨过程的模拟与分析.气象, 2009, 35(10):50-57. doi:  10.7519/j.issn.1000-0526.2009.10.006
    [4]
    苗春生, 杨艺亚, 王坚红, 等.两类华南沿海暖区暴雨特征及热力发展机制对比研究.热带气象学报, 2017, 33(1):53-63. http://d.old.wanfangdata.com.cn/Periodical/rdqxxb201701006
    [5]
    何立富, 周庆亮, 陈涛."05.6"华南暴雨中低纬度系统活动及相互作用.应用气象学报, 2010, 21(4):385-394. doi:  10.3969/j.issn.1001-7313.2010.04.001
    [6]
    梁海河.华南暴雨试验天气雷达数据处理及暴雨中尺度结构个例分析.应用气象学报, 2004, 15(3):281-290. doi:  10.3969/j.issn.1001-7313.2004.03.004
    [7]
    梁海河, 阮征, 葛润生.华南暴雨试验天气雷达数据处理及暴雨中尺度结构个例分析.应用气象学报, 2004, 15(3):281-290. doi:  10.3969/j.issn.1001-7313.2004.03.004
    [8]
    倪允琪, 周秀骥, 张人禾, 等.我国南方暴雨的试验与研究.应用气象学报, 2006, 17(6):690-704. doi:  10.3969/j.issn.1001-7313.2006.06.007
    [9]
    夏丽花, 吴启树, 黄美金, 等.一次暖区强降水的热力动力条件.气象科技, 2010, 38(5):572-576. doi:  10.3969/j.issn.1671-6345.2010.05.007
    [10]
    陈玥, 谌芸, 陈涛, 等.长江中下游地区暖区暴雨特征分析.气象, 2016, 42(6):724-731. http://d.old.wanfangdata.com.cn/Conference/8444313
    [11]
    王宗敏, 丁一汇, 张迎新, 等.西太平洋副热带高压的边界特征及其附近暖区对流雨带成因.气象学报, 2014, 72(3):417-427. http://d.old.wanfangdata.com.cn/Periodical/qxxb201403001
    [12]
    王坚红, 杨艺亚, 苗春生, 等.华南沿海暖区辐合线暴雨地形动力机制数值模拟研究.大气科学, 2017, 41(4):784-796. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx201704010
    [13]
    徐臖, 杨舒楠, 孙军, 等.北方一次暖区大暴雨强降水成因探讨.气象, 2014, 40(12):1455-1463. doi:  10.7519/j.issn.1000-0526.2014.12.004
    [14]
    王建捷, 郭肖容.1996年初次华南暴雨过程的数值模拟及其分析.应用气象学报, 1997, 8(3):257-268. http://qikan.camscma.cn/jamsweb/article/id/19970338
    [15]
    侯淑梅, 孙兴池, 范苏丹, 等.切变线冷区和暖区暴雨落区分析.大气科学学报, 2014, 37(3):333-343. doi:  10.3969/j.issn.1674-7097.2014.03.010
    [16]
    李川, 陈静, 何光碧, 等.青藏高原东侧陡峭地形对一次强降水天气过程的影响.高原气象, 2006, 25(3):442-450. doi:  10.3321/j.issn:1000-0534.2006.03.012
    [17]
    周长春, 吴蓬萍, 周秋雪.一次复杂地形暖区强降水特征及触发机制分析.暴雨灾害, 2015, 34(1):27-33. doi:  10.3969/j.issn.1004-9045.2015.01.004
    [18]
    矫梅燕, 李川, 李延香.一次川东大暴雨过程的中尺度分析.应用气象学报, 2005, 16(5):699-704. doi:  10.3969/j.issn.1001-7313.2005.05.018
    [19]
    陈忠明, 闵文彬, 高文良, 等.一次持续性强暴雨过程的平均特征.应用气象学报, 2006, 17(3):273-280. doi:  10.3969/j.issn.1001-7313.2006.03.003
    [20]
    张晓美, 蒙伟光, 张艳霞, 等.华南暖区暴雨中尺度对流系统的分析.热带气象学报, 2009, 25(5):551-560. doi:  10.3969/j.issn.1004-4965.2009.05.005
    [21]
    徐燚, 闫敬华, 王谦谦, 等.华南暖区暴雨的一种低层重力波触发机制.高原气象, 2013, 32(4):1050-1061. http://d.old.wanfangdata.com.cn/Conference/6588534
    [22]
    吴亚丽, 蒙伟光, 陈德辉, 等.一次华南暖区暴雨过程可预报性的初值影响研究.气象学报, 2018, 76(3):323-342. http://d.old.wanfangdata.com.cn/Periodical/qxxb201803001
    [23]
    叶朗明, 徐碧裕.两次不同类型暖区暴雨的对比分析.气象研究与应用, 2014, 35(4):5-10. doi:  10.3969/j.issn.1673-8411.2014.04.002
    [24]
    谌芸, 吕伟绮, 于超, 等.北方一次暖区大暴雨降水预报失败案例剖析.气象, 2018, 44(1):15-25. http://d.old.wanfangdata.com.cn/Periodical/qx201801002
    [25]
    郭弘, 林永辉, 周淼, 等.华南暖区暴雨中一次飑线的中尺度分析.暴雨灾害, 2014, 33(2):171-180. doi:  10.3969/j.issn.1004-9045.2014.02.010
    [26]
    刘蕾, 陈茂钦, 张凌云.柳州锋前暖区暴雨的分型及统计特征分析.气象研究与应用, 2016, 37(4):12-18. doi:  10.3969/j.issn.1673-8411.2016.04.003
    [27]
    夏茹娣, 赵思雄, 孙建华.一次华南锋前暖区暴雨β中尺度系统环境特征的分析研究.大气科学, 2006, 30(5):988-1008. doi:  10.3878/j.issn.1006-9895.2006.05.26
    [28]
    赵玉春, 李泽椿, 肖子牛.华南锋面与暖区暴雨个例对比分析.气象科技, 2008, 36(1):48-53. http://d.old.wanfangdata.com.cn/Periodical/qxkj200801009
    [29]
    傅朝, 杨晓军, 周晓军, 等.2013年6月19-20日甘肃陇东南暖区暴雨多普勒雷达特征分析.气象, 2015, 41(9):1095-1103. http://d.old.wanfangdata.com.cn/Periodical/qx201509006
    [30]
    张诚忠, 万齐林, 杨兆礼, 等.华南暖区强对流降水系统的结构和闪电特征分析.高原气象, 2011, 30(4):1034-1045. http://d.old.wanfangdata.com.cn/Periodical/gyqx201104021
    [31]
    赵庆云, 傅朝, 刘新伟, 等.西北东部暖区大暴雨中尺度系统演变特征.高原气象, 2017, 36(3):697-704. http://d.old.wanfangdata.com.cn/Periodical/gyqx201703011
    [32]
    王改利, 刘黎平, 阮征.多普勒雷达资料在暴雨临近预报中的应用.应用气象学报, 2007, 18(3):388-395. doi:  10.3969/j.issn.1001-7313.2007.03.016
    [33]
    Fernandez-Delgado M, Cernadas E, Barro S.Do we need hundreds of classifiers to solve real world classification problems.Journal of Machine Learning Research, 2014, 15(1):3133-3181. http://www.researchgate.net/publication/279556630_Do_we_need_hundreds_of_classifiers_to_solve_real_world_classification_problems
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(3)

    Article views (2630) PDF downloads(179) Cited by()
    • Received : 2019-10-10
    • Accepted : 2020-03-11
    • Published : 2020-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint