Zheng Xiangdong, Cheng Haixuan. Comparison of solar ultraviolet irradiance measurements at Zhongshan Station, Antarctica. J Appl Meteor Sci, 2020, 31(4): 482-493. DOI:  10.11898/1001-7313.20200410.
Citation: Zheng Xiangdong, Cheng Haixuan. Comparison of solar ultraviolet irradiance measurements at Zhongshan Station, Antarctica. J Appl Meteor Sci, 2020, 31(4): 482-493. DOI:  10.11898/1001-7313.20200410.

Comparison of Solar Ultraviolet Irradiance Measurements at Zhongshan Station, Antarctica

DOI: 10.11898/1001-7313.20200410
  • Received Date: 2019-12-19
  • Rev Recd Date: 2020-03-19
  • Publish Date: 2020-07-31
  • A comparative analysis is presented on surface solar ultraviolet B (UVB) band and ultraviolet A (UVA) irradiance measured by 3 UV broadband pyranometers: FSUVA(315-400 nm), FSUVB(280-315 nm) provided by Jiangsu Radio Scientific Institute Co. LTD (CJRSI), American Yankee UVB(280-320 nm), and Brewer ozone spectrophotometer, placed at Zhongshan Station, Antarctica. Using data of Brewer ozone spectrophotometer in 2017 as a reference, results show that, for UVB(280-315 nm) irradiance, the error of FSUVB is averagely (55±75)% but its irradiance is lower during the "ozone hole" period, indicating that domestic made FSUVB broadband radiometer is less sensitive to the ozone layer thinning. Furthermore, the irradiance relative error of FSUVB shows a certain upward trend with the increase of total atmospheric ozone, indicating an over-measured UVB irradiance by the FSUVB pyranometer in regions with normal ozone concentration, such as the area of middle-low latitudes including China. As a contrast, the error of Yankee UVB (280-320 nm) is averagely (-31±22)% lower than that of Brewer measured, however, the relative error and total ozone variation are unrelated. The under-measured UVB irradiance from the Yankee UVB pyranometer is attributed to the system calibration error. Since Brewer spectral UV measurement is limited within 286.5-363 nm, a so-called UV correction factor, on the basis of empirical ratio of spectral irradiance at the wavelength longer than 363 nm to the Brewer measured irradiance at 363 nm, is applied to make up Brewer spectral irradiance gap of 363.5-400 nm with wavelength resolution of 0.5 nm for constructing Brewer entire spectral UVA (315-400 nm) irradiance. The error of FSUVA is averagely (23±59)% when Brewer UVA irradiance is used as the reference. With tropospheric Ultraviolet visible (TUV) radiation model calculations under cloud-free and the sun zenith angle (SZA)less than 80° as references, irradiance errors measured by FSUVB, Yankee UVB and FSUVA are (30±37)%, (-22±19)% and (27±6.4)%, respectively, in 197 cases, while the average of differences between Brewer and TUV calculations are respectively (3.4±8.5)% in UVB band of 286.5-315 nm, (2.9±6.8)% in UVB band of 286.5-320 nm and (3.4±4.5)% in UVA band of 315-400 nm, proving the method of Brewer UVA correction factor is rational. Again, only the relative error of FSUVB measurements referenced to TUV calculations displays an evident increasing trend with the growth of total ozone. Mechanisms of over-measured solar irradiances from both domestic made broad-band UV pyranometers are not fully identified. Calibration methods needed to be improved with consideration of variable SZA and total ozone. In addition, the stray light at longer wavelengths should have a significant influences on the pyranometer's performances and this stray light need to be eliminated in further instrument improvement. For FSUVB, its less sensitiveness to the solar UVB irradiance during the period of "ozone hole" still needs to be resolved.
  • Fig. 1  Spectral response curves of Brewer spectrophotometer, Yankee UVB, FSUVB and FSUVA pyranometers

    Fig. 2  Time series of UVB irradiance measured in 2017

    Fig. 3  Irradiance errors of FSUVB and Yankee UVB from Brewer measurements in 2017

    Fig. 4  Relative errors of UVB irradiance measured by pyranometers as a function of total ozone from Brewer measurements

    Fig. 5  Time series of UVA irradiance measured by Brewer and FSUVA in 2007

    Fig. 6  FSUVA solar UVA irradiance error(a) and the relative error(b) with the standard of Brewer measurements in 2017

    Fig. 7  The variation of TUV simulation and measured solar UV irradiances values under cloud-free sky and the SZA less than 80° at 280-315 nm, 280-320 nm and 315-400 nm at Zhongshan Station, Antarctica in 2017

    Fig. 8  Relative errors of measured UVB irradiance from TUV calculations under cloud-free sky

    Table  1  Specifications of instruments for UV irradiance measurements

    技术参数Yankee UVBFSUVBFSUVABrewer
    波长范围/nm280~320280~315315~400286.5~363
    余弦效应< 5%[16]< 4%[25]< 7%[25]< 5%[27]
    工作原理通过NiSO4滤光片的辐射照在
    MgWO4涂面的荧光效
    应产生易测绿光[16]
    截止滤光片过滤辐射照
    在探测器接收面上
    同FSUVB光栅衍射分光
    探测器GaAsp硅光二极管探测
    荧光效应后的绿光[16]
    硅光二极管探测同FSUVB光电倍增管
    仪器响应时间/s11.51.5< 1
    数据时间分辨率/min1119(光谱扫描)
    标定方法150 W Xeron arc光源
    及光谱仪组合标定[16]
    溯源计量院光源标定荷兰Kipp
    & Zonen公司的UVS-AB-T
    宽波段日射表,UVS-AB-T
    室外标定FSUVB
    同FSUVB二级溯源NIST1000W钨灯室内
    光谱测值标定,363~400 nm
    采用UVA订正因子估算[27]
    稳定度/(%·a-1)未知< 5< 5< 0.5*
    背景最低信号未知< 10 mv< 10 mv5光子数
    辐照度测量范围/
    (W·m-2)
    < 10< 6< 90< 90
    日测值相对误差/%2< 10< 10< 5
    工作环境温度/℃-40~40-40~50-40~50-40~50
    注:*表示来自2011年1月和2017年11月标定值比较。
    DownLoad: Download CSV

    Table  2  Statistical comparison of measured UVB, UVA irradiance and TUV calculation under cloud-free sky at Zhongshan Station, Antarctica(n=197, SZA less then 80°)

    误差280~315 nm280~320 nm315~400 nm
    BrewerFSUVBBrewerYankee UVBBrewerFSUVA
    误差/(W·m-2)0.012±0.0380.052±0.0370.033±0.096-0.2±0.21.1±1.46.9±3.6
    相对误差/%3.1±8.530.1±37.32.9±6.8-21.7±19.13.4±4.527.0±6.4
    DownLoad: Download CSV
  • [1]
    WMO.Guide to Meteorological Instruments and Methods of Observations.7th Edition, Geneva: WMO, 2014.
    [2]
    Kerr J B, McElroy T C.Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion.Science, 1993, 262:1032-1034. doi:  10.1126/science.262.5136.1032
    [3]
    Lubin D, Frederick J E, Booth C R, et al.Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica.Geophys Res Lett, 1989, 16:783-785. doi:  10.1029/GL016i008p00783
    [4]
    吕达仁, 李卫, 李福田, 等.长春地区紫外光谱(UV-A, UV-B)辐射观测和初步分析.大气科学, 1996, 20(3):343-351. doi:  10.3878/j.issn.1006-9895.1996.03.10
    [5]
    沈元芳, 况石.紫外线模式预报方法的研究和试验.应用气象学报, 2002, 13(增刊Ⅰ):223-231. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2002z1025
    [6]
    卞林根, 陆龙骅.南极长城站和中山站辐射特征的研究.应用气象学报, 1998, 9(2):160-168. http://qikan.camscma.cn/jamsweb/article/id/19980223
    [7]
    胡筱欣, 陆龙骅, 张凤英, 等.南极春季臭氧的TOVS反演及其与Brewer观测的比较.应用气象学报, 1996, 7(4):437-442. http://qikan.camscma.cn/jamsweb/article/id/19960467
    [8]
    孙治安, 翁笃鸣.青藏高原地区地表及行星反射率.应用气象学报, 1994, 5(4):394-401. http://qikan.camscma.cn/jamsweb/article/id/19940471
    [9]
    郑向东, 汤洁, 李维亮, 等.拉萨地区1998年夏季臭氧总量及垂直廓线的观测研究.应用气象学报, 2000, 11(2):173-179. doi:  10.3969/j.issn.1001-7313.2000.02.006
    [10]
    卓嘎, 徐祥德, 陈联寿.青藏高原对流云团东移发展的不稳定特征.应用气象学报, 2002, 13(4):448-456. doi:  10.3969/j.issn.1001-7313.2002.04.008
    [11]
    徐祥德, 陈联寿.青藏高原大气科学试验研究进展.应用气象学报, 2007, 17(6):756-772. http://qikan.camscma.cn/jamsweb/article/id/200606124
    [12]
    蔡兆男, 王永, 郑向东, 等.利用探空资料验证GOME卫星臭氧数据.应用气象学报, 2009, 20(3):337-345. doi:  10.3969/j.issn.1001-7313.2009.03.010
    [13]
    陈树, 郑向东, 林伟立, 等.西藏当雄地基紫外线指数观测研究.应用气象学报, 2015, 26(4):482-491. doi:  10.11898/1001-7313.20150410
    [14]
    刘梦琪, 郑向东, 赵春生.夏季西藏4个站点大气向下长波辐射观测分析.应用气象学报, 2018, 29(5):596-608. doi:  10.11898/1001-7313.20180508
    [15]
    Berger D A.The sunburning ultraviolet-meter Design.Photochemistry and Photobiology, 1976, 24:587-593. doi:  10.1111/j.1751-1097.1976.tb06877.x
    [16]
    Dichter B K, Beaubien A F, Beaubien D J.Development and characterization of a new solar ultraviolet-B irradiance detector.J Atmos Oceanic Technol, 1993, 10(3):337-344. doi:  10.1175/1520-0426(1993)010<0337:DACOAN>2.0.CO;2
    [17]
    张晓春, 汤洁, 王炳忠.用Yankee(扬基)UVB-1型紫外辐射表测量大气中的紫外B辐射.青海环境, 2003(3):100-104. doi:  10.3969/j.issn.1007-2454.2003.03.003
    [18]
    WMO.Report of the Second International UV Filter Radiometer Calibration Campaign UVC-Ⅱ at Davos, Switzerland, May 25th-October 5th, 2017.TD-No.240, Geneva: WMO, 2018.
    [19]
    Leszczynski K, Jokela K, Ylianttila L, et al.Erythemaly weighted radiometers in solar UV monitoring:Results from the WMO/STUK inter comparison.Photochemistry and Photobiology, 1998, 67:212-221. doi:  10.1562/0031-8655(1998)067<0212:EWRISU>2.3.CO;2
    [20]
    张保洲, 王术军, 李子英.全天候气象专用B波段紫外辐照计的研制.计量学报, 2006, 27(1):25-27. doi:  10.3321/j.issn:1000-1158.2006.01.006
    [21]
    中华人民共和国国家标准.紫外红斑效应参照谱、标准红斑剂量和紫外指数.GB/T 21005-2007.2007.
    [22]
    汤洁, 王炳忠, 姚萍.国产紫外辐射表仪器性能测试(I):室内静态性能测试.太阳能学报, 2005, 26(2):183-186. doi:  10.3321/j.issn:0254-0096.2005.02.008
    [23]
    汤洁, 王炳忠, 刘广仁.国产紫外辐射表仪器性能测试(Ⅱ):室外测试及与国外同类产品比较.太阳能学报, 2005, 26(3):313-320. doi:  10.3321/j.issn:0254-0096.2005.03.004
    [24]
    郑向东, 周秀骥, 陆陇骅, 等.1993年南极中山站"臭氧洞"的观测研究.科学通报, 1994, 40(6):533-535. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199506016
    [25]
    江苏省无线电科学研究所有限公司.FSUV系列紫外辐射传感器.2019.
    [26]
    Madronich S.The Atmosphere and UV-B Radiation at Ground Level.Environmental UV Photobiology, Plenum Press, 1993: 1-39.
    [27]
    Lakkala K, Arola A, Heikkilä A, et al.Quality assurance of the Brewer spectral UV measurements in Finland.Atmos Chem Phys, 2008, 8:3369-3383. doi:  10.5194/acp-8-3369-2008
    [28]
    Tomasi C, Kokhanovsky A A, Lupi A, et al.Aerosol remote sensing in polar regions.Earth-Science Reviews, 2005, 140:104-158. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5e37c43b57e309eade511f1886b5f70c
    [29]
    Koepke I P, Bais A, Balis D, et al.Comparison of models used for UV index calculations.Photochemistry and Photobiology, 1998, 67(6):657-662. doi:  10.1111/j.1751-1097.1998.tb09109.x
    [30]
    Wang P, Lenoble J.Comparison between measurements and modeling of UV-B irradiance for clear sky:A case study.Applied Optics, 1994, 33(18):3964-3971. doi:  10.1364/AO.33.003964
    [31]
    陈爱军, 周芬, 梁学伟等.中国地区MODIS地表反照率反演结果的时空分布研究.大气科学学报, 2018, 41(2):267-274. http://d.old.wanfangdata.com.cn/Periodical/njqxxyxb201802013
    [32]
    Bodhaine B A, Dutton E G, Mckenzie R L, et al.Calibrating broadband UV instruments-Ozone and solar zenith angle dependence.J Atmos Oceanic Technol, 1998, 15(4):916-926. doi:  10.1175/1520-0426(1998)015<0916:CBUIOA>2.0.CO;2
    [33]
    郑向东, 韦小丽.中国4个地点地基与卫星臭氧总量长期观测比.应用气象学报, 2010, 21(1):1-10. doi:  10.3969/j.issn.1001-7313.2010.01.001
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (2835) PDF downloads(57) Cited by()
    • Received : 2019-12-19
    • Accepted : 2020-03-19
    • Published : 2020-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint