He Lifu, Chen Shuang, Guo Yunqian. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. DOI:  10.11898/1001-7313.20200501.
Citation: He Lifu, Chen Shuang, Guo Yunqian. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. DOI:  10.11898/1001-7313.20200501.

Observation Characteristics and Synoptic Mechanisms of Typhoon Lekima Extreme Rainfall in 2019

DOI: 10.11898/1001-7313.20200501
  • Received Date: 2020-04-12
  • Rev Recd Date: 2020-06-05
  • Publish Date: 2020-09-30
  • Observation characteristics of extreme heavy rainfall with its thermodynamic structure evolution and water vapor transmission of super-typhoon Lekima in 2019 is comprehensively diagnosed and analyzed, in terms of automatic weather station data, FY-2G TBB and the microwave hygrometer channel inversion data of FY-3D MWHSⅡ, radar networking data and NCEP FNL 1° by 1° analysis data. Results show that heavy rain covers most parts of East China when Lekima heading north, its extreme rainfall (process rainfall amount more than 350 mm) occur in eastern Zhejiang and central Shandong, with the maximum rainfall point of 833 mm and 612 mm, respectively. The average rainfall of the whole province ranks first or second in the history of process rainfall in Zhejiang and Shandong, and daily rainfall values of 21 national stations are new historical records. The interaction of the typhoon, subtropical high, mid-latitude westerly trough and the abundant water vapor transport of the strong southeast low-level jet (over 25-35 m·s-1 in speed) along the coast of East China provide favorable environmental conditions for the long-term maintenance of Lekima and the occurrence of extreme heavy rainfall as the typhoon northward. The extreme heavy rainfall in eastern Zhejiang is mainly caused by the development of powerful typhoon body, its deep vertical vortex system (over 60×10-5 s-1 in vorticity) and the strong upward movement breaking through the tropopause, as well as the dense deep convection system (TBB of -80--72 K) with high-efficiency rainfall and latent heat feedback in the eye-wall area of typhoon. The extreme heavy rainfall in the middle part of Shandong is closely related to the evolution of Lekima's asymmetric structure and the invasion of cold air during the typhoon heading northward. The extremity of rainfall comes from the combined action of the long-distance heavy rainfall originated from the easterly inverted trough and a long time "frontal properties" rainfall. The inverted trough frontogenesis, the convergence of southeast low-level jet and the easterly wind provide good dynamic and water vapor conditions for the long-distance rainstorm. Three main spiral rain belts in the north of the typhoon move anticlockwise, new convective systems constantly induce on warm side and merge in the inverted trough area, leading to train effect on the windward slope of terrain in central Shandong. With the continuous invasion of 500 hPa dry and cold air from the lower layer, a θse frontal zone inclining westward with height is formed near 118°E on the west side of typhoon. The warm and humid flow climb causes the second stage of long-time stable rainfall during Lekima's arrival in Shandong and the slow circle round in the Laizhou Bay.

  • Fig. 1  The track of typhoon Lekima(the dot-line) with stations of extreme daily rainfall(the dot)(a) and the accumulated rainfall from 0800 BT 8 Aug to 0800 BT 14 Aug in 2019 (the shaded denotes rainfall over 100 mm)(b)

    Fig. 2  Monitoring of short-term heavy rainfall in Zhejiang and Shandong from 8 Aug to 14 Aug in 2019

    (a)Zhejiang area from 2000 BT 9 Aug to 2000 BT 10 Aug in 2019, (b)Shandong area from 2000 BT 10 Aug to 2000 BT 11 Aug in 2019, (c)hourly rainfall at Kuocangshan of Zhejiang, (d)hourly rainfall at Zichuan of Shandong

    Fig. 3  500 hPa geopotential height(the contour, unit:dagpm) and 850 hPa wind (the barb denotes velocity no less than 6 m·s-1, the shaded denotes the wind speed more than 20 m·s-1, the red think line denotes trough line) at 2000 BT 9 Aug(a), 2000 BT 10 Aug(b), 2000 BT 11 Aug(c) in 2019

    Fig. 4  The evolution of FY-2G TBB(below -52℃) with 3 h accumulated rainfall from 2300 BT 9 Aug to 0500 BT 10 Aug in 2019

    Fig. 5  Cross-section of the moisture flux divergence(the contour, unit:10-7 g·hPa-1·cm-2·s-1) along the typhoon center at 2000 BT 9 Aug(a), 0200 BT 10 Aug(b), 0800 BT 10 Aug(c) in 2019 (the black triangle denotes the typhoon center, the black thick line denotes the location of extremely strong rainfall)

    Fig. 6  Cross-section of vorticity(the shaded) and divergence velocity(the contour, unit:10-5 s-1) along the typhoon center at 2000 BT 9 Aug(a), 0200 BT 10 Aug(b), 0800 BT Aug(c) in 2019 (the black triangle denotes the typhoon center, the black thick line denotes the location of extremely strong rainfall)

    Fig. 7  The wind field(the vector) at 0500 BT 10 Aug 2019 with terrain(the shaded) (the red vector denotes airflow, the red dashed line denotes convergence)(a) and cross-section of average vertical velocity(the shaded) in the east of Zhejiang(the blue box area showed in Fig. 7a)(b)

    Fig. 8  Wind field and water vapor transfer on 11 Aug 2019

    (a)850 hPa wind(the arrow, no less that 20 m·s-1) and moisture flux(the shaded, unit:g·kg-1·m·s-1) at 0200 BT, (b)850 hPa wind(the arrow, no less that 20 m·s-1) and moisture flux(the shaded, unit:g·kg-1·m·s-1) at 0800 BT, (c)925 hPa wind(the barb, no less than 12 m·s-1) and moisture flux divergence(the shaded, unit:10-7 g·kg-1·m·s-1) at 0200 BT, (d)925 hPa wind(the barb, no less than 12 m·s-1) and moisture flux divergence (the shaded, unit:10-7 g·kg-1·m·s-1) at 0800 BT

    Fig. 9  Cross-section of positive vorticity(the shaded) and divergence(the contour, unit:10-5 s-1) along the typhoon center at 0200 BT(a) and 0800 BT(b) on 11 Aug 2019 with cross-section of θse (the red contour, unit:K) and meridional vertical velocity(the vector is the combination of meridional wind and vertical movement(multiplied by 100), the black contour denotes the area upward movement no more than -0.5×10-2 Pa·s-1) along the typhoon center at 0200 BT(c) and 0800 BT(d) on 11 Aug 2019(the black triangle denotes the location of typhoon center, the black thick line denotes the location of extremely strong rainfall)

    Fig. 10  Combined reflectivity factors(the shaded) at 2100 BT 10 Aug(a), 0100 BT 11 Aug(b) and 0500 BT 11 Aug(c) in 2019(the black dot denotes the typhoon center)

    Fig. 11  The surface wind(the vector) at 0200 BT 11 Aug 2019 with terrain(the shaded)

    Fig. 12  Cross-section of θse(the red contour, unit:K) and zonal vertical velocity(the vector is the combination of zonal wind and vertical movement(multiplied by 100), the black contour denotes the upward movement no more than -0.2×10-2 Pa·s-1)) along the typhoon center at 2000 BT 11 Aug(a), 0200 BT 12 Aug(b), 0800 BT 12 Aug(c) in 2019 (the brown dotted line denotes θse front area, the blue arrow denotes dry cold invasion)

  • [1]
    陈联寿, 丁一汇.西太平洋台风概论.北京:科学出版社, 1979.
    [2]
    陈联寿, 孟智勇.我国热带气旋研究十年进展.大气科学, 2001, 25(3):420-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx200103011
    [3]
    Merrill R T.Environmental influences on on hurricane in tensification.J Atmos Sci, 1988, 45(11):1678-1687.
    [4]
    Frank W M, Ritchie E A.Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes.Mon Wea Rev, 2001, 129(9):2249-2269. http://cn.bing.com/academic/profile?id=e2d199844f2bf4e8f72462f8a8398550&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    刘健, 蒋建莹.不同观测分辨率强台风云系的遥感特征.应用气象学报, 2014, 25(1):1-10. http://qikan.camscma.cn/article/id/20140101
    [6]
    梁力, 吴志伟, 严光华.9012热带气旋登陆后维持不消的动力机制.热带气象学报, 1995, 11(1):26-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500745171
    [7]
    张晓慧, 张立凤, 周海申, 等.双台风相互作用及其影响.应用气象学报, 2019, 30(4):456-466. doi:  10.11898/1001-7313.20190406
    [8]
    史得道, 易笑园, 刘彬贤.台风"达维"不对称结构特征分析.气象与环境学报, 2014, 30(3):10-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnqx201403002
    [9]
    程正泉, 林良勋, 杨国杰, 等.超强台风威马逊快速增强及大尺度环流特征.应用气象学报, 2017, 28(3):318-326. doi:  10.11898/1001-7313.20170306
    [10]
    吕梅, 邹力, 姚鸣明, 等.台风"艾利"降水的非对称结构分析.热带气象学报, 2009, 25(1):22-28. http://www.cnki.com.cn/Article/CJFDTotal-RDQX200901005.htm
    [11]
    何立富, 尹洁, 陈涛, 等.0509号台风麦莎的结构与外围暴雨分布特征.气象, 2006, 32(3):93-100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx200603015
    [12]
    杨舒楠, 曹勇, 陈涛, 等.台风苏迪罗登陆次日分散性暴雨成因及预报着眼点.气象, 2019, 45(1):38-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201901004
    [13]
    林文, 林长城, 李白良, 等.登陆台风麦德姆不同部位降水强度及谱特征.应用气象学报, 2016, 27(2):239-248. doi:  10.11898/1001-7313.20160212
    [14]
    陶祖钰, 田佰军, 黄伟.9216号台风登陆后的不对称结构和暴雨.热带气象学报, 1994, 10(1):69-77. http://www.cnki.com.cn/Article/CJFDTotal-RDQX401.008.htm
    [15]
    丁治英, 张兴强, 何金海, 等.非纬向高空急流与远距离台风中尺度暴雨的研究.热带气象学报, 2001, 17(2):144-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb200102006
    [16]
    徐祥德, 陈联寿, 解以扬, 等.环境场大尺度锋面系统与变性台风结构特征及其暴雨的形成.大气科学, 1998, 22(5):744-752. http://www.cnki.com.cn/Article/CJFDTotal-DQXK805.008.htm
    [17]
    陈艳, 宿海良, 寿绍文, 等.麦莎台风造成冀东大暴雨的数值模拟和诊断分析.应用气象学报, 2008, 19(2):209-218. http://qikan.camscma.cn/article/id/20080237
    [18]
    程正泉, 陈联寿, 李英.大陆高压对强热带风暴碧利斯内陆强降水影响.应用气象学报, 2013, 24(3):257-267. http://qikan.camscma.cn/article/id/20130301
    [19]
    王瑾, 柯宗建, 江吉喜."麦莎"台风暴雨落区非对称分布的诊断分析.热带气象学报, 2007, 23(6):563-568. http://www.cnki.com.cn/Article/CJFDTotal-RDQX200706005.htm
    [20]
    郭英莲, 徐海明.对流层中上层干空气对"碧利斯"台风暴雨的影响.大气科学学报, 2010, 33(1):98-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njqxxyxb201001013
    [21]
    郭达烽, 周芳, 陈翔翔, 等.登陆台风"麦德姆"的空心结构及其特征.气象与环境学报, 2017, 33(3):10-20. http://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201703002.htm
    [22]
    张长安, 郑秀专, 潘娅婷.台风圣帕的空心现象分析.气象, 2008, 34(4):48-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx200804006
    [23]
    李英, 陈联寿, 雷小途.高空槽对9711号台风变性加强影响的数值研究.气象学报, 2006, 64(5):552-563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200605002
    [24]
    杜惠良, 黄新睛, 冯晓伟, 等.弱冷空气与台风残留低压相互作用对一次大暴雨过程的影响.气象, 2011, 37(7):847-856. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201107010.htm
    [25]
    钮学新, 杜惠良, 刘建勇.0216号台风降水及其影响机制的数值模拟试验.气象学报, 2005, 63(1):57-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200501007
    [26]
    王淑静, 黎明, 陈高峰.解释台风暴雨落区判断的探讨.应用气象学报, 1997, 8(2):167-174. http://qikan.camscma.cn/article/id/19970223
    [27]
    王毅, 张晓美, 杨寅, 等.1617号鲸鱼台风登陆后引发不同性质暴雨的成因对比分析.大气科学学报, 2019, 42(2):245-254. https://kns.cnki.net/KCMS/detail/detail.aspx?dbCode=CJFD&filename=NJQX201902008&tableName=CJFDPREP&url=
    [28]
    叶成志, 李昀英.热带气旋"碧利斯"与南海季风相互作用的强水汽特征数值研究.气象学报, 2011, 69(3):496-507. http://www.cnki.com.cn/Article/CJFDTotal-QXXB201103010.htm
    [29]
    丁治英, 朱静, 邢莓, 等.热带扰动与远距离暴雨关系的统计分析与数值试验.大气科学学报, 2017, 40(4):496-507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njqxxyxb201704007
    [30]
    邓莲堂, 刘式适, 徐祥德, 等.Rossby参数β在涡旋Rossby波中的作用.热带气象学报, 2004, 20(5):483-492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb200405004
    [31]
    余志豪.台风螺旋雨带——涡旋Rossby波.气象学报, 2002, 60(4):502-507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200204014
    [32]
    王勇, 丁治英, 李勋, 等.台风"海棠"(2005)登陆前后非对称螺旋雨带.热带气象学报, 2010, 26(5):544-554. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb201005005
    [33]
    周玲丽, 翟国庆, 王东海, 等.0713号"韦帕"台风暴雨的中尺度数值研究和非对称性结构分析.大气科学, 2011, 35(6):1046-1056. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx201106005
    [34]
    朱佩君, 郑永光, 王洪庆, 等.台风螺旋雨带的数值模拟研究.科学通报, 2005, 50(5):486-494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200505015
    [35]
    梁旭东, 端义宏, 陈仲良.登陆台风对流和非对称结构.气象学报, 2002, 60(增刊Ⅰ):26-35.
    [36]
    雷小途.非绝热加热对热带气旋径向非均匀结构的影响.海洋学报, 2000, 22(4):24-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyxb200004009
    [37]
    谢惠敏, 任福民, 李国平, 等.超强台风丹娜丝对1323号强台风菲特极端降水的作用.气象, 2016, 42(2):156-165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201602003
    [38]
    徐文慧, 倪允琪.登陆台风环流内的一次中尺度对流过程.应用气象学报, 2009, 20(3):267-275. http://qikan.camscma.cn/article/id/20090302
    [39]
    钮学新, 董加斌, 杜惠良.华东地区台风降水及影响降水因素的气候分析.应用气象学报, 2005, 16(3):402-407. http://qikan.camscma.cn/article/id/20050349
    [40]
    何立富, 许爱华, 陈涛."泰利"台风低压大暴雨过程冷空气与地形的作用.气象科技, 2009, 37(4):385-391. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj200904001
    [41]
    徐亚梅.8807号登陆台风的数值研究:内核结构及能量水汽收支.气象学报, 2007, 65(6):877-887. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200706004.htm
    [42]
    段晶晶, 钱燕珍, 周福, 等.台风灿鸿造成浙江东北部大暴雨地形作用的数值模拟研究.气象, 2017, 43(6):686-695. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201706005
  • 加载中
  • -->

Catalog

    Figures(12)

    Article views (3830) PDF downloads(323) Cited by()
    • Received : 2020-04-12
    • Accepted : 2020-06-05
    • Published : 2020-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint