[1]
|
Tegen I, Lacis A, Fung I.The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 1996, 380:419-422. doi: 10.1038/380419a0
|
[2]
|
Quijano A, Sokolik I, Toon O.Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions. J Geophys Res, 2000, 105(D10):12207-12219. doi: 10.1029/2000JD900047
|
[3]
|
|
[4]
|
Allen S, Plattner G, Nauels A, et al.Climate change 2013:The physical science basis.An overview of the working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC). Computational Geometry, 2007, 18(2):95-123. https://ui.adsabs.harvard.edu/abs/2013AGUFMGC51A0949A/abstract
|
[5]
|
王海啸, 黄建国, 陈长和.城市气溶胶对短波辐射的影响及其在边界层温度变化中的反映.气象学报, 1993, 51(4):457-464.
|
[6]
|
|
[7]
|
Xu J, Li C, Shi H, et al.Analysis on the impact of aerosol optical depth on surface solar radiation in the Shanghai megacity.China. Atmos Chem Phys, 2011, 11:3281-3289. doi: 10.5194/acp-11-3281-2011
|
[8]
|
|
[9]
|
Toon O B, McKay C P, Ackerman T P, et al.Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J Geophys Res Atmos, 1989, 94(D13):16287-16301. doi: 10.1029/JD094iD13p16287
|
[10]
|
Zhang X, Zhong J, Wang J, et al.The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming. Atmos Chem Phys:Discussions, 2018, 18(8):5991-5999. doi: 10.5194/acp-18-5991-2018
|
[11]
|
Wang H, Peng Y, Zhang X, et al.Contributions to the explosive growth of PM 2.5 mass due to aerosol-radiation feedback and decrease in turbulent diffusion during a red alert heavy haze in Beijing-Tianjin-Hebei, China. Atmos Chem Phy, 2018, 18(23):17717-17733. doi: 10.5194/acp-18-17717-2018
|
[12]
|
|
[13]
|
García O E, Díaz J P, Expósito F J, et al.Aerosol Radiative Forcing: AERONET Based Estimates, Climate Models.2012.
|
[14]
|
|
[15]
|
Zheng Y, Che H, Xia X, et al.Five-year observation of aerosol optical properties and its radiative effects to planetary boundary layer during air pollution episodes in North China:Intercomparison of a plain site and a mountainous site in Beijing. Science of The Total Environment, 2019, 674:140-158. doi: 10.1016/j.scitotenv.2019.03.418
|
[16]
|
|
[17]
|
|
[18]
|
|
[19]
|
|
[20]
|
|
[21]
|
Sheng Z, Che H, Chen Q, et al.Aerosol vertical distribution and optical properties of different pollution events in Beijing in autumn 2017. Atmos Res, 2019, 215:193-207. doi: 10.1016/j.atmosres.2018.08.029
|
[22]
|
|
[23]
|
|
[24]
|
|
[25]
|
Holben B, Eck T, Slutsker I, et al.AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 1998, 66:1-16. doi: 10.1016/S0034-4257(98)00031-5
|
[26]
|
|
[27]
|
|
[28]
|
|
[29]
|
|
[30]
|
|
[31]
|
Petäjä T, Järvi L, Kerminen V, et al.Enhanced air pollution via aerosol-boundary layer feedback in China. Sci Rep, 2016, 6:18998. doi: 10.1038/srep18998
|
[32]
|
|
[33]
|
Liu Q, Ding D, Huang M, et al.A study of elevated pollution layer over the North China Plain using aircraft measurements. Atmos Environ, 2018, 190:188-194. doi: 10.1016/j.atmosenv.2018.07.024
|
[34]
|
|
[35]
|
Che H, Zhao H, Wu Y, et al.Analyses of aerosol optical properties and direct radiative forcing over urban and industrial regions in Northeast China. Meteor Atmos Phys, 2015, 127(3):345-354. doi: 10.1007/s00703-015-0367-3
|
[36]
|
|
[37]
|
|
[38]
|
|
[39]
|
|
[40]
|
|