高度 | 水凝物类型 |
低于零度层亮带底部 | 中雨、大滴、大雨、雨雹混合物 |
零度层亮带底部—零度层亮带 | 湿雪、霰、中雨、大滴、大雨、雨雹混合物 |
零度层亮带—零度层亮带顶部 | 干雪、湿雪、霰、冰晶、大滴、雨雹混合物 |
高于零度层亮带顶部 | 干雪、霰、冰晶、雨雹混合物 |
Citation: | Jiang Yinfeng, Kou Leilei, Chen Aijun, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. DOI: 10.11898/1001-7313.20200508. |
Table 1 Distribution of hydrometeors
高度 | 水凝物类型 |
低于零度层亮带底部 | 中雨、大滴、大雨、雨雹混合物 |
零度层亮带底部—零度层亮带 | 湿雪、霰、中雨、大滴、大雨、雨雹混合物 |
零度层亮带—零度层亮带顶部 | 干雪、湿雪、霰、冰晶、大滴、雨雹混合物 |
高于零度层亮带顶部 | 干雪、霰、冰晶、雨雹混合物 |
Table 2 Fitted curve coefficients
类别 | a0 | a1 | a2 | a3 | a4 | a5 |
冰 | 0.0120 | 0.0111 | -0.0020 | 6.8441×10-5 | -7.8862×10-7 | 3.0245×10-9 |
水 | -0.0377 | 0.0530 | -0.0020 | -7.5728×10-7 | 1.5135×10-7 | |
湿雪 | 0.0165 | -0.0189 | -4.2491×10-5 | 2.4098×10-7 | ||
干雪 | 0.0088 | -0.1131 | 0.0077 | -1.9627×10-4 | 2.2309×10-6 | -9.3026×10-9 |
[1] |
陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. http://qikan.camscma.cn/article/id/20040693
|
[2] |
东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. http://qikan.camscma.cn/article/id/20120104
|
[3] |
刘晓阳, 李郝, 何平, 等.GPM/DPR雷达与CINRAD雷达降水探测对比.应用气象学报, 2018, 29(6):667-679. doi: 10.11898/1001-7313.20180603
|
[4] |
Liao L, Meneghini R, Iguchi T.Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, Site.J Atmos Oceanic Technol, 2000, 18(12):1959-1974. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1780e3abbcf9018dd3169453fb6c1f64
|
[5] |
王振会, 李圣殷, 戴建华, 等.星载雷达与地基雷达数据的个例对比分析.高原气象, 2015, 34(3):804-814. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyqx201503023
|
[6] |
Wen Y X, Hong Y, Zhang G, et al.Cross validation of spaceborne radar and ground polarimetric radar aided by polarimetric echo classification of hydrometeor types.J Appl Meteor Climatol, 2011, 50(7):1389-1402. doi: 10.1175/2011JAMC2622.1
|
[7] |
Munsung K, Bong-Chul S, Krajewski, et al.Inter-comparison of reflectivity measurements between GPM DPR and NEXRAD radars.Atmos Res, 2019, 226:49-65. doi: 10.1016/j.atmosres.2019.04.010
|
[8] |
陈新涛, 刘晓阳.GPM DPR雷达联合地面S波段雷达反演雨滴谱.北京大学学报(自然科学版), 2019, 55(2):227-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201902004
|
[9] |
陈廷娣, 王连仲, 窦贤康.TRMM卫星与机载雷达在降雨反演中的数据对比个例研究.应用气象学报, 2008, 19(4):454-462. http://qikan.camscma.cn/article/id/20080409
|
[10] |
李嘉睿, 卢乃锰, 谷松岩.青藏高原地区TRMM PR地面降雨率的修正.应用气象学报, 2015, 26(5):636-640. doi: 10.11898/1001-7313.20150513
|
[11] |
唐英杰, 马舒庆, 杨玲, 等.云底高度的地基毫米波云雷达观测及其对比.应用气象学报, 2015, 26(6):680-687. doi: 10.11898/1001-7313.20150604
|
[12] |
何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. http://qikan.camscma.cn/article/id/200904011
|
[13] |
高郁东, 万齐林, 薛纪善, 等.同化雷达估算降水率对暴雨预报的影响.应用气象学报, 2015, 26(1):45-46. doi: 10.11898/1001-7313.20150105
|
[14] |
史锐, 程明虎, 崔哲虎, 等.用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水.应用气象学报, 2005, 16(6):737-745. http://qikan.camscma.cn/article/id/20050696
|
[15] |
楚志刚, 许丹, 王振会, 等.基于TRMM/PR的长江中下游地基雷达一致性订正.应用气象学报, 2018, 29(3):296-306. doi: 10.11898/1001-7313.20180304
|
[16] |
Toshio I, Shinta S, Robert M, et al.GPM/DPR Level-2 Algorithm Theoretical Basis Document.[2020-05-08].https://gpm.nasa.gov/sites/default/files/document_files/ATBD_DPR_201811_with_Appendix3b.pdf.
|
[17] |
Park J D, Ou M L.Global precipitation measurement (GPM) ground validation (GV) prototype status.J Atmos Oceanic Technol, 2014, 31(9):1902-1921. doi: 10.1175/JTECH-D-13-00193.1
|
[18] |
Park H S, Ryzhkov A V, Zrnic D S, et al.The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS.Wea Forecasting, 2009, 24(3):730-748. doi: 10.1175/2008WAF2222205.1
|
[19] |
Ulbrich C W.Natural variation in the analytical form of the raindrop-size distribution.J Climate Appl Meteor, 1983, 22(10):1764-1775. doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
|
[20] |
张合勇, 赵卫疆, 任德明, 等.球形粒子Mie散射参量的Matlab改进算法.光散射学报, 2008, 20(2):102-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gssxb200802002
|
[21] |
Park S G, Maki M, Iwanami K, et al.Correction of radar reflectivity and differential reflectivity for rain attenuation at X band.Part Ⅱ:Evaluation and application.J Atmos Oceanic Technol, 2005, 22(11):1633-1655. doi: 10.1175/JTECH1804.1
|
[22] |
姚晓娟.NUIST-C波段双线偏振多普勒雷达资料质量控制及回波特征分析.南京:南京信息工程大学, 2016.
|
[23] |
Cao Q, Hong Y, Qi Y C, et al.Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency.J Geophys Res Atmos, 2013, 118:1814-1825. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a51da214d186cbcfb021be8598de086a
|
[24] |
Ray P S.Broadband complex refractive indices of ice and water.Appl Opt, 1972, 11(8):1836-1844. doi: 10.1364/AO.11.001836
|
[25] |
Matzler C.In thermal microwave radiation:Applications for remote sensing.Electro-magnetic Waves Series, 2006, 52:455-462. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/030913338200600201
|
[26] |
Bohren C F, Battan L J.Radar backscattering by inhomogeneous precipitation particles.J Atmos Sci, 1980, 37(8):1821-1827. doi: 10.1175/1520-0469(1980)037<1821:RBBIPP>2.0.CO;2
|
[27] |
Liao L, Meneghini R.Validation of TRMM precipitation radar through comparison of its multiyear measurements with ground-based radar.J Appl Meteor Climatol, 2009, 48:804-817. doi: 10.1175/2008JAMC1974.1
|
[28] |
Shang J, Yang H, Yin H G, et al.First results from field campaign of spaceborne precipitation radar in China:Radar performance analysis.J Remote Sens, 2012, 16(3):435-447. http://en.cnki.com.cn/Article_en/CJFDTotal-YGXB201203002.htm
|