Jiang Yinfeng, Kou Leilei, Chen Aijun, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. DOI:  10.11898/1001-7313.20200508.
Citation: Jiang Yinfeng, Kou Leilei, Chen Aijun, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. DOI:  10.11898/1001-7313.20200508.

Comparison of Reflectivity Factor of Dual Polarization Radar and Dual-frequency Precipitation Radar

DOI: 10.11898/1001-7313.20200508
  • Received Date: 2020-04-15
  • Rev Recd Date: 2020-06-15
  • Publish Date: 2020-09-30
  • To find the root cause of the difference between spaceborne radar and ground-based radar data, their similarities and differences are quantitatively analyzed using GPM (Global Precipitation Measurement Mission) DPR (dual-frequency precipitation radar) and C-band dual-polarization radar (CDP) at Nanjing University of Information Science & Technology with respect to reflectivity factor classification of hydrometeor types by spatial-temporal matchup. The comparison reveals a high correlation of 0.86 between reflectivity factor detected by GPM DPR and CDP from 2015 to 2017 and a small root mean square error(RMSE) of 3.33 dB after attenuation correction and band correction, and the correlation passes the test of 0.001 level. The band correction formulas for detecting different hydrometeors reflectivity factor in C- and Ku-band are fitted by T-matrix method, applied the formula of dry snow to dry snow and graupel, applied the formula of wet snow is applicable to wet snow and rain hail, applied the formula of water to moderate rain, applied big drop and heavy rain and the band correction formula of ice to ice crystal. Band correction is carried out for different hydrometeors echoes after attenuation correction, the echo consistency of wet snow, graupel, big drops and moderate rain is well, and the correlation coefficient is over 0.85, the RMSE is less than 4 dB and echo differences of wet snow, graupel, big drops and moderate rain are small. The echo correlation coefficient of dry snow is relatively less than 0.8 due to the complex shape of dry snow which leads to difference between horizontal and vertical directions of CDP and difference between Mie scattering simulation and actual situation of dry snow, and further study on simulation of dry snow reflectivity factor is deserved. Due to the detection resolution of DPR and insufficient effective irradiation volume of CDP, the echo correlation coefficient of heavy rain and ice crystal is less than 0.4, and the reflectivity factor of heavy rain and ice crystal detected by DPR is less than CDP. The difference of reflectivity factor between DPR and CDP is mainly caused by dry snow, heavy rain and ice crystal. The amount of band correction is less than the amount of attenuation correction, then attenuation is the main factor. Band correction improves the matching situation on the basis of attenuation correction. NS mode and HS mode in DPR are different. NS mode can detect high reflectivity factor and is sensitive to strong echo, but is weak in detecting small reflectivity factor, while HS mode can detect small reflectivity factor and is sensitive to weak echo, but is weak in detecting high reflectivity factor.
  • Fig. 1  Scatter plot and difference scatter plot of reflectivity factor of DPR and GR

    Fig. 2  Z, ZDR, ρ, hydrometeor distribution of CDP at NUIST with different degrees at 0025 UTC 26 Oct 2016(the distance between adjacent range rings is 30 km)

    Fig. 3  DFR of different hydrometeors varing with ZKu

    Fig. 4  Scatter plot and probability density function of different hydrometeors after band correction

    Fig. 5  Curves of statistical parameters of different hydrometeors after band correction

    Table  1  Distribution of hydrometeors

    高度 水凝物类型
    低于零度层亮带底部 中雨、大滴、大雨、雨雹混合物
    零度层亮带底部—零度层亮带 湿雪、霰、中雨、大滴、大雨、雨雹混合物
    零度层亮带—零度层亮带顶部 干雪、湿雪、霰、冰晶、大滴、雨雹混合物
    高于零度层亮带顶部 干雪、霰、冰晶、雨雹混合物
    DownLoad: Download CSV

    Table  2  Fitted curve coefficients

    类别 a0 a1 a2 a3 a4 a5
    0.0120 0.0111 -0.0020 6.8441×10-5 -7.8862×10-7 3.0245×10-9
    -0.0377 0.0530 -0.0020 -7.5728×10-7 1.5135×10-7
    湿雪 0.0165 -0.0189 -4.2491×10-5 2.4098×10-7
    干雪 0.0088 -0.1131 0.0077 -1.9627×10-4 2.2309×10-6 -9.3026×10-9
    DownLoad: Download CSV
  • [1]
    陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. http://qikan.camscma.cn/article/id/20040693
    [2]
    东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. http://qikan.camscma.cn/article/id/20120104
    [3]
    刘晓阳, 李郝, 何平, 等.GPM/DPR雷达与CINRAD雷达降水探测对比.应用气象学报, 2018, 29(6):667-679. doi:  10.11898/1001-7313.20180603
    [4]
    Liao L, Meneghini R, Iguchi T.Comparisons of rain rate and reflectivity factor derived from the TRMM precipitation radar and the WSR-88D over the Melbourne, Florida, Site.J Atmos Oceanic Technol, 2000, 18(12):1959-1974. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1780e3abbcf9018dd3169453fb6c1f64
    [5]
    王振会, 李圣殷, 戴建华, 等.星载雷达与地基雷达数据的个例对比分析.高原气象, 2015, 34(3):804-814. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyqx201503023
    [6]
    Wen Y X, Hong Y, Zhang G, et al.Cross validation of spaceborne radar and ground polarimetric radar aided by polarimetric echo classification of hydrometeor types.J Appl Meteor Climatol, 2011, 50(7):1389-1402. doi:  10.1175/2011JAMC2622.1
    [7]
    Munsung K, Bong-Chul S, Krajewski, et al.Inter-comparison of reflectivity measurements between GPM DPR and NEXRAD radars.Atmos Res, 2019, 226:49-65. doi:  10.1016/j.atmosres.2019.04.010
    [8]
    陈新涛, 刘晓阳.GPM DPR雷达联合地面S波段雷达反演雨滴谱.北京大学学报(自然科学版), 2019, 55(2):227-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb201902004
    [9]
    陈廷娣, 王连仲, 窦贤康.TRMM卫星与机载雷达在降雨反演中的数据对比个例研究.应用气象学报, 2008, 19(4):454-462. http://qikan.camscma.cn/article/id/20080409
    [10]
    李嘉睿, 卢乃锰, 谷松岩.青藏高原地区TRMM PR地面降雨率的修正.应用气象学报, 2015, 26(5):636-640. doi:  10.11898/1001-7313.20150513
    [11]
    唐英杰, 马舒庆, 杨玲, 等.云底高度的地基毫米波云雷达观测及其对比.应用气象学报, 2015, 26(6):680-687. doi:  10.11898/1001-7313.20150604
    [12]
    何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. http://qikan.camscma.cn/article/id/200904011
    [13]
    高郁东, 万齐林, 薛纪善, 等.同化雷达估算降水率对暴雨预报的影响.应用气象学报, 2015, 26(1):45-46. doi:  10.11898/1001-7313.20150105
    [14]
    史锐, 程明虎, 崔哲虎, 等.用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水.应用气象学报, 2005, 16(6):737-745. http://qikan.camscma.cn/article/id/20050696
    [15]
    楚志刚, 许丹, 王振会, 等.基于TRMM/PR的长江中下游地基雷达一致性订正.应用气象学报, 2018, 29(3):296-306. doi:  10.11898/1001-7313.20180304
    [16]
    Toshio I, Shinta S, Robert M, et al.GPM/DPR Level-2 Algorithm Theoretical Basis Document.[2020-05-08].https://gpm.nasa.gov/sites/default/files/document_files/ATBD_DPR_201811_with_Appendix3b.pdf.
    [17]
    Park J D, Ou M L.Global precipitation measurement (GPM) ground validation (GV) prototype status.J Atmos Oceanic Technol, 2014, 31(9):1902-1921. doi:  10.1175/JTECH-D-13-00193.1
    [18]
    Park H S, Ryzhkov A V, Zrnic D S, et al.The hydrometeor classification algorithm for the polarimetric WSR-88D:Description and application to an MCS.Wea Forecasting, 2009, 24(3):730-748. doi:  10.1175/2008WAF2222205.1
    [19]
    Ulbrich C W.Natural variation in the analytical form of the raindrop-size distribution.J Climate Appl Meteor, 1983, 22(10):1764-1775. doi:  10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [20]
    张合勇, 赵卫疆, 任德明, 等.球形粒子Mie散射参量的Matlab改进算法.光散射学报, 2008, 20(2):102-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gssxb200802002
    [21]
    Park S G, Maki M, Iwanami K, et al.Correction of radar reflectivity and differential reflectivity for rain attenuation at X band.Part Ⅱ:Evaluation and application.J Atmos Oceanic Technol, 2005, 22(11):1633-1655. doi:  10.1175/JTECH1804.1
    [22]
    姚晓娟.NUIST-C波段双线偏振多普勒雷达资料质量控制及回波特征分析.南京:南京信息工程大学, 2016.
    [23]
    Cao Q, Hong Y, Qi Y C, et al.Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency.J Geophys Res Atmos, 2013, 118:1814-1825. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a51da214d186cbcfb021be8598de086a
    [24]
    Ray P S.Broadband complex refractive indices of ice and water.Appl Opt, 1972, 11(8):1836-1844. doi:  10.1364/AO.11.001836
    [25]
    Matzler C.In thermal microwave radiation:Applications for remote sensing.Electro-magnetic Waves Series, 2006, 52:455-462. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/030913338200600201
    [26]
    Bohren C F, Battan L J.Radar backscattering by inhomogeneous precipitation particles.J Atmos Sci, 1980, 37(8):1821-1827. doi:  10.1175/1520-0469(1980)037<1821:RBBIPP>2.0.CO;2
    [27]
    Liao L, Meneghini R.Validation of TRMM precipitation radar through comparison of its multiyear measurements with ground-based radar.J Appl Meteor Climatol, 2009, 48:804-817. doi:  10.1175/2008JAMC1974.1
    [28]
    Shang J, Yang H, Yin H G, et al.First results from field campaign of spaceborne precipitation radar in China:Radar performance analysis.J Remote Sens, 2012, 16(3):435-447. http://en.cnki.com.cn/Article_en/CJFDTotal-YGXB201203002.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(2)

    Article views (2242) PDF downloads(132) Cited by()
    • Received : 2020-04-15
    • Accepted : 2020-06-15
    • Published : 2020-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint