Ren Sanxue, Zhao Huarong, Qi Yue, et al. The outbreak and damage of the Pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. DOI:  10.11898/1001-7313.20200509.
Citation: Ren Sanxue, Zhao Huarong, Qi Yue, et al. The outbreak and damage of the Pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. DOI:  10.11898/1001-7313.20200509.

The Outbreak and Damage of the Pleonomus Canaliculatus in Wheat Field Under the Background of Climate Change

DOI: 10.11898/1001-7313.20200509
  • Received Date: 2020-03-01
  • Rev Recd Date: 2020-06-02
  • Publish Date: 2020-09-30
  • In recent years, with the large-scale implementation of conservation tillage measures and crop straw crushing in North China, the winter wheat and summer corn are planted in two crops per year, creating a favorable environment for feeding and habituating for the Pleonomus canaliculatus. As the temperature in autumn, winter and spring of Gucheng Station in Hebei Province alternates between cold and warm from 2018 to 2019, the minimum temperature is significantly higher, inducing the explosive occurrence of the Pleonomus canaliculatus in the wheat field. According to the investigation of spring wheat field excavation, the maximum density of insect population is 144 heads·m-2, the maximum weight of insect population is 18.764 g·m-2. Among 58 investigation points, densities of 57 points exceed 5 heads·m-2, which calls for control measures. The density of insects in the jointing-harvest period is the highest during the booting period, followed by the jointing period, and that of the harvest period is the lowest. The oldest larvae have a maximum length of 34.68 mm, and a maximum width of 4.9 mm, 4.68 mm longer and 0.90 mm wider comparing to existing record respectively. The density of insect populations in the continuous cropping winter wheat and summer maize gramineous crops is 35.3 to 40.4 heads·m-2, which is significantly higher than that of soybean, corn, and winter wheat recreation grounds. The peanut and spring corn lands are more than 5 times higher than the soybean insect population density, and the weight of insect population is more than 10 times higher. Yield measurement in mature wheat fields shows the grain yield is reduced by 36.8%. When the insect population density increases by 10 heads·m-2, grain yield decreases by 4.824%. When insect population weight increases by 1 g·m-2, grain yield reduction increases by 3.871%, and 10% increase of plant pest will make the grain yield reduction rate increase by 11.587%.
  • Fig. 1  Daily temperature anomaly at Gucheng Station from 1 Oct 2018 to 30 Apr 2019

    Fig. 2  Monthly temperature anomaly and extreme minimum temperature anomaly at Gucheng Station from Oct 2018 to Apr 2019

    Fig. 3  Density of Pleonomus canaliculatus in the wheat field at Gucheng Station in spring of 2019

    Fig. 4  Weight of Pleonomus canaliculatus in the wheat field at Gucheng Station in spring of 2019

    Fig. 5  Pest rate of Pleonomus canaliculatus in the wheat field at Gucheng Station in spring of 2019

    Fig. 6  Relationship of Pleonomus canaliculatus density, weight, pest rate to grain yield reduction

    Table  1  Investigation on Pleonomus canaliculatus in the winter wheat field at Gucheng Station in 2019

    调查时段 地段 沟金针虫数量/(头·m-2) 最大沟金针虫 沟金针虫
    重量/(g·m-2)
    总数量 长度/mm 宽度/mm
    返青-拔节期 麦田A 20.7 12.3 15.0 48.0 28.71 3.67 5.764
    麦田B 24.2 15.0 15.8 55.0 28.05 3.82 7.095
    孕穗期 麦田A 12.0 11.2 31.6 54.8 29.81 4.17 5.849
    麦田B 24.0 30.7 34.7 89.4 29.00 3.92 9.465
    收获期 麦田A 7.0 0.6 2.4 10.0 26.00 4.05 1.107
    麦田B 21.0 11.2 10.6 42.8 26.34 3.92 3.983
    DownLoad: Download CSV

    Table  2  Comparison of Pleonomus canaliculatus between winter wheat, summer maize continuous cropping and leisure land at Gucheng Station in 2019

    调查地段 沟金针虫数量/(头·m-2) 最大沟金针虫 沟金针虫
    重量/(g·m-2)
    总数量 长度/mm 宽度/mm
    前茬大豆 1.0 1.2 1.6 3.8 23.72 3.45 0.311
    前茬冬小麦 4.3 0.3 0.0 4.6 25.81 3.70 0.732
    前茬春玉米 12.6 4.0 3.3 19.9 25.72 3.55 1.791
    前茬夏玉米 11.4 5.4 4.2 21.0 24.63 3.61 1.934
    冬小麦与夏玉米连作A 30.6 7.2 2.6 40.4 29.40 4.09 5.520
    冬小麦与夏玉米连作B 27.8 6.0 1.5 35.3 30.93 4.03 5.416
    DownLoad: Download CSV

    Table  3  Investigation on Pleonomus canaliculatus in the leisure land at Gucheng Station in 2019

    调查地段 沟金针虫数量/(头·m-2) 最大沟金针虫 沟金针虫
    重量/(g·m-2)
    总数量 长度/mm 宽度/mm
    前茬大豆地 0.0 1.7 3.3 5.0 17.20 2.42 0.187
    前茬花生地 4.7 4.0 18.0 26.7 24.90 3.55 1.399
    前茬春玉米A 10.3 8.3 8.0 26.5 27.80 3.48 2.444
    前茬春玉米B 13.3 7.3 7.7 28.3 29.03 3.60 2.905
    前茬夏玉米A 5.7 2.0 1.3 9.0 25.95 3.65 1.239
    前茬夏玉米B 4.3 3.0 0.3 7.6 27.07 3.74 0.754
    前茬夏玉米C 5.3 1.0 0.3 6.6 27.00 3.47 0.828
    DownLoad: Download CSV
  • [1]
    魏鸿钧, 张治良, 王荫长.中国地下害虫.上海:上海科学技术出版社, 1989.
    [2]
    罗益镇, 牛赡光, 龙岩.麦田沟金针虫种群垂直分布与夏眠的生态特性及其与防治的关系.生态学杂志, 1994, 13(3):7-10. http://www.cqvip.com/Main/Detail.aspx?id=1470440
    [3]
    丁一汇, 任国玉, 石广玉, 等.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展, 2006, 2(1):3-8. http://d.wanfangdata.com.cn/Periodical/qhbhyjjz2007z1001
    [4]
    郭建平.气候变化对中国农业生产的影响研究进展.应用气象学报, 2015, 26(1):1-11. doi:  10.11898/1001-7313.20150101
    [5]
    IPCC.Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press, 2007:1-989.
    [6]
    陈峪, 任国玉, 王凌, 等.近56年我国暖冬气候事件变化.应用气象学报, 2009, 20(5):539-545. http://qikan.camscma.cn/article/id/20090504
    [7]
    魏凤英, 曹鴻兴, 王丽萍.20世纪80-90年代我国气候增暖进程的统计事实.应用气象学报, 2003, 14(1):79-86. http://qikan.camscma.cn/article/id/20030109
    [8]
    任国玉, 初子莹, 周雅清, 等.中国气温变化研究最新进展.气候与环境研究, 2005, 10(4):701-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj200504001
    [9]
    王绍武, 叶瑾琳, 龚道溢, 等.近百年中国年气温序列的建立.应用气象学报, 1998, 9(4):392-401. http://qikan.camscma.cn/article/id/19980459
    [10]
    黄嘉佑, 胡永云.中国冬季气温变化的趋向性研究.气象学报, 2006, 64(5):614-621. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200605008
    [11]
    陈隆勋, 邵永宁, 张清芬, 等.近四十年我国气候变化的初步分析.应用气象学报, 1991, 2(2):164-174. http://qikan.camscma.cn/article/id/19910215
    [12]
    王绍武, 赵宗慈.未来50年中国气候变化趋势的初步研究.应用气象学报, 1995, 6(3):333-342. http://qikan.camscma.cn/article/id/19950352
    [13]
    吴鹏.IPCC《气候变化与土地特别报告》释放了哪些信号.中国气象报, 2019-08-15(3).
    [14]
    熊伟, 郭丽娜.气候变化"威胁"中国农业.华夏星火.农经, 2009(7):58-59. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HXXH200907022
    [15]
    周广胜, 郭建平, 霍治国, 等.中国农业应对气候变化.北京:气象出版社, 2014.
    [16]
    霍治国, 范雨娴, 杨建莹, 等.中国农业洪涝灾害研究进展.应用气象学报, 2017, 28(6):641-653. doi:  10.11898/1001-7313.20170601
    [17]
    霍治国, 李茂松, 王丽, 等.气候变暖对中国农作物病虫害的影响.中国农业科学, 2012, 45(10):1926-1934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201210005
    [18]
    霍治国, 李茂松, 王丽, 等.降水变化对中国农作物病虫害的影响.中国农业科学, 2012, 45(10):1935-1945. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201210006
    [19]
    霍治国, 李茂松, 李娜, 等.季节性变暖对中国农作物病虫害的影响.中国农业科学, 2012, 45(11):2168-2179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201211005
    [20]
    陈爱端.金针虫对几种环境因子适应性研究.北京:中国农业科学院, 2011.
    [21]
    何振贤, 郭更博, 刘子卓.沟金针虫成灾因素分析及综合治理对策.河南农业科学, 2006(11):63-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx200611021
    [22]
    祁永忠.青海省地下害虫发生动态研究.青海农技推广, 2000(1):11. http://www.cqvip.com/QK/86899X/200001/4000625181.html
    [23]
    李耀发, 高占林, 党志红, 等.河北省中北部主要农作物地下害虫发生情况调查.2014年中国植物保护学会学术年会, 2015.
    [24]
    邢佑博, 龙岩.沟金针虫大发生的原因及防治对策.病虫测报, 1990(4):30-31. http://www.cqvip.com/QK/97996A/199004/4001678929.html
    [25]
    刘小宁, 李庆祥.我国最大冻土深度变化及初步解释.应用气象学报, 2003, 14(3):299-308. http://qikan.camscma.cn/article/id/20030337
    [26]
    仵均祥.关于麦田沟金针虫防治指标的建议.植物保护, 1987, 13(2):50-51. http://www.cnki.com.cn/Article/CJFDTotal-ZWBH198702034.htm
    [27]
    吴立民, 陆化森, 何培谭, 等.沟金针虫为害小麦的损失分析及防治指标研究.昆虫知识, 1993(2):78-81. http://www.cqvip.com/Main/Detail.aspx?id=1111803
    [28]
    罗益镇, 牛赡光, 龙岩, 等.沟金针虫为害小麦产量损失与经济阈值的研究.山东农业科学, 1991(5):42-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001017130
    [29]
    王新俊.冬麦区金针虫类为害损失及防治指标的研究.植物保护, 1995, 21(1):28-29. http://www.cqvip.com/QK/90218X/199501/1952674.html
    [30]
    赵江涛, 于有志.中国金针虫研究概述.农业科学研究, 2010, 31(3):49-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nxnxyxb201003013
    [31]
    马慧萍, 潘涛.沟金针虫的发生与防治.农业科技与信息, 2010(5):31-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nykjyxx201005022
    [32]
    李耀发, 党志红, 安静杰, 等.河北省主要作物田地下害虫种类及其分布.中国农学通报, 2018, 34(28):114-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb201828021
    [33]
    许向利, 李艳红, 李怡萍, 等.小麦不同生育期地下害虫为害程度与其虫口密度的关系.植物保护学报, 2012, 39(5):385-389. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwbhxb201205001
    [34]
    罗益镇, 崔景岳.土壤昆虫学.北京:中国农业出版社, 1995.
    [35]
    仵均祥.农业昆虫学.北京:中国农业出版社, 2016.
    [36]
    董晋明, 赵荣华, 陆俊姣, 等.山西省农田地下害虫优势种群分布及其为害程度的调查研究.中国植保导报, 2014, 34(12):28-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zbjsytg201412007
    [37]
    吴立民.麦田沟金针虫的发生为害特点及无公害防治技术.中国植保导报, 2004, 24(4):14-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zbjsytg200404005
    [38]
    陆俊姣, 董晋明, 任美凤, 等.山西临汾冬小麦-夏玉米轮作田地下害虫种群在土壤中的迁移规律.昆虫学报, 2017, 60(9):1046-1059. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcxb201709009
    [39]
    侯英雨, 张蕾, 吴门新, 等.国家级现代农业气象业务技术进展.应用气象学报, 2018, 29(6):641-656. doi:  10.11898/1001-7313.20180601
    [40]
    吴铱.轮作倒茬与沟金针虫的防治.昆虫学报, 1966, 15(2):131-136. http://www.cnki.com.cn/Article/CJFDTotal-KCXB196602005.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(3)

    Article views (2978) PDF downloads(127) Cited by()
    • Received : 2020-03-01
    • Accepted : 2020-06-02
    • Published : 2020-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint