Li Jingyi, Wang Zunya, Wen Min. Characteristics of QBWO over the East Asian monsoon region presented by different elements. J Appl Meteor Sci, 2020, 31(6): 653-667. DOI:  10.11898/1001-7313.20200602.
Citation: Li Jingyi, Wang Zunya, Wen Min. Characteristics of QBWO over the East Asian monsoon region presented by different elements. J Appl Meteor Sci, 2020, 31(6): 653-667. DOI:  10.11898/1001-7313.20200602.

Characteristics of QBWO over the East Asian Monsoon Region Presented by Different Elements

DOI: 10.11898/1001-7313.20200602
  • Received Date: 2020-07-06
  • Rev Recd Date: 2020-08-20
  • Publish Date: 2020-10-27
  • Different variables present discrepancy in characteristics of the quasi-biweekly oscillation (QBWO), which is a dominant sub-seasonal signal in the East Asian monsoon regime. However, there is limited investigation about similarities and differences in features of QBWO presented by varying variables. In order to fill this gap, adopting the empirical orthogonal function (EOF) and composite analysis, such variables as outgoing longwave radiation (OLR), 500 hPa potential vorticity (PV), 850 hPa relative vorticity, 850 hPa zonal wind, 850 hPa meridional wind and 750 hPa specific humidity are compared, regarding of the spatial-temporal distribution, intensity and propagation of QBWO over the East Asian monsoon region. It is found that all these variables show significant QBWO across the region with similar spatial and temporal variation. And the strongest QBWO is observed over the South China Sea (SCS) with all variables. QBWO in OLR propagates north-westward over the East Asian monsoon regime. Centres of active (suppressed) QBWO convection correspond to positive (negative) PV anomalies at 500 hPa level and cyclonic (anticyclonic) vortex at 850 hPa level. These circulations form a northwest-southeast tilted wave train. Two leading modes of QBWO in 500 hPa PV, 850 hPa relative vorticity and 850 hPa zonal wind have greater meridional magnitude than those of OLR. QBWO in three variables also propagate north-westward, but spread faster to north. Oppositely, two leading modes of QBWO in 850 hPa meridional wind are characterized by the zonal dipole pattern and the westward propagation is evident. Actually, its speed of northward propagation is the slowest of all. Different from all others, QBWO in 750 hPa specific humidity propagates south-eastward, and variances explained by QBWO of 750 hPa specific humidity is the smallest. As for the intensity of QBWO, except for 750 hPa specific humidity, other variables have consistent inter-annual variation. Totally, affected by such complex physical processes as transformation of precipitation state, release of heat and so on, characteristics of QBWO is hardly captured by 750 hPa specific humidity. However, OLR, 500 hPa PV, 850 hPa relative vorticity, 850 hPa zonal wind and 850 hPa meridional wind can well characterize QBWO over the East Asian monsoon region. Of all variables compared in this analysis, 500 hPa PV and 850 hPa relative vorticity are highly consistent in describing QBWO over the East Asian monsoon region. Specific causes that lead to different characteristics of QBWO over the East Asian monsoon regime presented by different variables need further discussion, which can provide a new reference for selecting monitoring indices for QBWO over the East Asian monsoon region.
  • Fig. 1  Variance distribution of OLR from May to Oct in 1979-2018

    (a)unfiltered OLR, (b)10-20 d filtered OLR, (c)30-60 d filtered OLR, (d)the ratio of variance of 10-20 d filtered OLR to variance of 30-60 d filtered OLR

    Fig. 2  Composite 10-20 d filtered 850 hPa wind(the vector), OLR anomaly(the shaded) and 500 hPa potential vorticity(the contour, unit:10-2 PVU, where 1 PVU=10-6·K·m2·kg-1·s) in different phases of the quasi-biweekly oscillation based on EOF modes of 10-20 d filtered OLR

    (OLR, 850 hPa wind and 500 hPa potential vorticity passing the test of 0.05 level are plotted)

    Fig. 3  The same as in Fig. 2, but for EOF modes of 10-20 d filtered 500 hPa potential vorticity

    Fig. 4  The same as in Fig. 2, but for EOF modes of 10-20 d filtered 850 hPa relative vorticity

    Fig. 5  The same as in Fig. 2, but for EOF modes of 10-20 d filtered 850 hPa zonal wind

    Fig. 6  The same as in Fig. 2, but for EOF modes of 10-20 d filtered 850 hPa meridional wind

    Fig. 7  The same as in Fig. 2, but for EOF modes of 10-20 d filtered 750 hPa specific humidity

    Fig. 8  Longitude-phase section of 10-20 d filtered OLR based on the quasi-biweekly oscillation principal components of OLR(a), 500 hPa potential vorticity(b), 850 hPa relative vorticity(c), 850 hPa zonal wind(d), 850 hPa meridional wind(e) and 750 hPa specific humidity(f)

    (unit:W·m-2, the shaded denotes passing the test of 0.05 level)

    Fig. 9  Latitude-phase section of 10-20 d filtered OLR based on the quasi-biweekly oscillation principal components of OLR(a), 500 hPa potential vorticity(b), 850 hPa relative vorticity(c), 850 hPa zonal wind(d), 850 hPa meridional wind(e) and 750 hPa specific humidity(f)

    (unit:W·m-2, the shaded denotes passing the test of 0.05 level)

    Fig. 10  Standardized intensity of quasi-biweekly oscillation in OLR and 500 hPa potential vorticity, 850 hPa relative vorticity, 850hPa zonal wind, 850 hPa meridional wind, 750 hPa specific humidity averaged over East Asian monsoon region from May to Oct in 1979-2018

  • [1]
    Madden R A, Julian P R.Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific.J Atmos Sci, 1971, 28(5):702-708. doi:  10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [2]
    Madden R A, Julian P R.Description of global-scale circulation cells in the tropics with a 40-50 day period.J Atmos Sci, 1972, 29(6):1109-1123. doi:  10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [3]
    李丽平, 王盘兴, 管兆勇, 等.热带对流季内振荡强度异常特征及其与海表温度的关系.应用气象学报, 2008, 19(2):145-152. http://qikan.camscma.cn/article/id/20080227
    [4]
    林爱兰, Li Tim, 李春晖.热带夏季风场与对流场季节内振荡传播模比较.应用气象学报, 2010, 21(5):545-557. http://qikan.camscma.cn/article/id/20100504
    [5]
    Krishnamurti T N, Ardanuy P.The 10 to 20-day westward propagating mode and "Breaks in the Monsoons".Tellus, 1980, 32(1):15-26. doi:  10.3402/tellusa.v32i1.10476
    [6]
    Chen T C, Chen J M.An observational study of the South China Sea monsoon during the 1979 summer:Onset and life cycle.Mon Wea Rev, 1995, 123:2295-2318. doi:  10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2
    [7]
    彭茹, 武炳义.1982/1983年季风准双周振荡的位相传播及地理特征.应用气象学报, 1995, 6(2):206-212. http://qikan.camscma.cn/article/id/19950222
    [8]
    Fukutomi Y, Yasunari T.10-25 day intraseasonal variations of convection and circulation over East Asia and western North Pacific during early summer.J Meteor Soc Japan, 1999, 77:753-769. doi:  10.2151/jmsj1965.77.3_753
    [9]
    Fukutomi Y, Yasunari T.Tropical-extratropical interaction associated with the 10-25 day oscillation over the western Pacific during the northern summer.J Meteor Soc Japan, 2002, 80:311-331. doi:  10.2151/jmsj.80.311
    [10]
    Wen M, Zhang R.Role of the quasi-biweekly oscillation in the onset of convection over the Indochina Peninsula.Quart J Roy Meteor Soc, 2007, 133:433-444. doi:  10.1002/qj.38
    [11]
    Wen M, Zhang R.Quasi-biweekly oscillation of the convection around Sumatra and low-level tropical circulation in boreal spring.Mon Wea Rev, 2008, 136:189-205. doi:  10.1175/2007MWR1991.1
    [12]
    Kikuchi K, Wang B.Global perspective of the quasi-biweekly oscillation.J Climate, 2009, 22(6):1340-1359. doi:  10.1175/2008JCLI2368.1
    [13]
    李崇银, 周亚萍.热带大气中的准双周(10-20天)振荡.大气科学, 1995, 19(4):435-444. http://www.cnki.com.cn/Article/CJFDTotal-DQXK504.005.htm
    [14]
    Murakami M.Analysis of summer monsoon fluctuations over India.J Meteor Soc Japan(Ser Ⅱ), 1976, 54(1):15-31. doi:  10.2151/jmsj1965.54.1_15
    [15]
    Lau K M, Yang S.Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM.J Climate, 1996, 9(5):965-985. doi:  10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2
    [16]
    陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17(6):711-724. http://qikan.camscma.cn/article/id/200606120
    [17]
    王磊, 陈光华, 黄荣辉.西北太平洋大气准双周振荡对热带气旋活动的影响.大气科学, 2009, 33(3):416-424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx200903002
    [18]
    陶丽, 李双君, 濮梅娟, 等.热带大气准双周振荡对西北太平洋地区热带气旋路径的影响.大气科学学报, 2012, 35(4):404-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njqxxyxb201204003
    [19]
    李春晖, 刘燕, 李霞, 等.热带西北太平洋10~30 d振荡对南海夏季风影响.应用气象学报, 2016, 27(3):293-302. doi:  10.11898/1001-7313.20160304
    [20]
    You L, Gao J, Lin H, et al.Impact of the intra-seasonal oscillation on tropical cyclone genesis over the western North Pacific.Inter J Climatol, 2019, 39(4):1969-1984. doi:  10.1002/joc.5927
    [21]
    Ko K C, Hsu H H.Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July-August season.J Meteor Soc Japan, 2006, 84:871-889. doi:  10.2151/jmsj.84.871
    [22]
    Chen G, Sui C H.Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer.J Geophys Res Atmos, 2010, 115(D14), DOI: 10.1029/2009JD013389.
    [23]
    Jia X, Yang S.Impact of the quasi-biweekly oscillation over the western North Pacific on East Asian subtropical monsoon during early summer.J Geophys Res Atmos, 2013, 118(10):4421-4434. doi:  10.1002/jgrd.50422
    [24]
    Wang M, Wang J, Duan A.Propagation and mechanisms of the quasi-biweekly oscillation over the Asian Summer Monsoon Region.J Meteor Res, 2017, 31:321-335. doi:  10.1007/s13351-017-6131-5
    [25]
    Chen T C, Yen M C, Weng S P.Interaction between the summer monsoons in East Asia and the South China Sea:Intraseasonal monsoon modes.J Atmos Sci, 2000, 57:1373-1392. doi:  10.1175/1520-0469(2000)057<1373:IBTSMI>2.0.CO;2
    [26]
    Mao J Y, Chan J C L.Intraseasonal variability of the South China Sea summer monsoon.J Climate, 2005, 18:2388-2402. doi:  10.1175/JCLI3395.1
    [27]
    杨秋明.初夏亚洲季风区环流低频振荡与长江下游持续暴雨.应用气象学报, 1993, 4(3):320-326. http://qikan.camscma.cn/article/id/19930355
    [28]
    陆尔, 丁一汇.1991年江淮特大暴雨与东亚大气低频振荡.气象学报, 1996, 54(6):730-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600422715
    [29]
    周兵, 文继芬.1998年夏季我国东部降水与大气环流异常及其低频特征.应用气象学报, 2007, 18(2):129-136. http://qikan.camscma.cn/article/id/20070225
    [30]
    Yang J, Wang B, Wang B, et al.Biweekly and 21-30-day variations of the subtropical summer monsoon rainfall over the Lower Reach of the Yangtze River Basin.J Climate, 2010, 23:1146-1159. doi:  10.1175/2009JCLI3005.1
    [31]
    纪忠萍, 谷德军, 吴乃庚, 等.广东省前汛期暴雨与500 hPa关键区准双周振荡.应用气象学报, 2010, 21(6):671-684. http://qikan.camscma.cn/article/id/20100604
    [32]
    黄瑶, 肖天贵, 金荣花.大气低频振荡对四川盆地持续性强降水的影响.应用气象学报, 2019, 30(1):93-104. doi:  10.11898/1001-7313.20190109
    [33]
    Numaguti A.Characteristics of 4-20-day-period disturbances observed in the equatorial Pacific during the TOGA COARE IOP.J Meteor Soc Japan, 1995, 73:353-377. doi:  10.2151/jmsj1965.73.2B_353
    [34]
    陈隆勋, 高辉, 何金海, 等.夏季东亚和印度热带季风环流系统动能和对流扰动的纬向传播特征.中国科学(地球科学), 2004, 34(2):171-179. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200402010
    [35]
    Zhang Y, Li T, Wang B, et al.Onset of the summer monsoon over the Indochina Peninsula:Climatology and interannual variations.J Climate, 2002, 15:3206-3221. doi:  10.1175/1520-0442(2002)015<3206:OOTSMO>2.0.CO;2
    [36]
    李丽平, 王盘兴, 管兆勇.热带对流和环流季节内振荡强度与海表温度关系对比研究.大气科学, 2009, 33(4):771-782. http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-atmospheric-sciences_thesis/0201251780854.html
    [37]
    Li J Y, Wen M, Wang Z Y, Hu Y.Relations between the quasi-biweekly oscillation over the East Asian monsoon region and the East Asian tropical monsoon depressions.Inter J Climatol, 2020, DOI: 10.1002/joc.6699.
    [38]
    Lee H T.Climate Algorithm Theoretical Basis Document (C-ATBD): Outgoing Longwave Radiation (OLR)-Daily.NOAA's Climate Data Record (CDR) Program, 2014.
    [39]
    Dee D P, Uppala S M, Simmons A J, et al.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Quart J Roy Meteor Soc, 2011, 137(656):553-597. doi:  10.1002/qj.828
    [40]
    Kobayashi S, Ota Y, Harada Y.The JRA-55 Reanalysis:General Specifications and Basic Characteristics.J Meteor Soc Japan, 2015, 93(1):5-48. doi:  10.2151/jmsj.2015-001
    [41]
    Duchon C E.Lanczos filtering in one and two dimensions.J Applied Meteor, 1979, 18:1016-1022. doi:  10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
    [42]
    Matthews A J.Propagation mechanisms for the Madden-Julian oscillation.Quart J Roy Meteor Soc, 2000, 126(569):2637-2651. doi:  10.1002/qj.49712656902
    [43]
    Wheeler M C, Hendon H H.An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction.Mon Wea Rev, 2004, 132(8):1917-1932. doi:  10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [44]
    Wilks D S.Statistical Methods in the Atmospheric Sciences.London:Academic Press, 2006.
    [45]
    Tao S, Chen L.A Review of Recent Research on the East Asia Summer Monsoon over China//Monsoon Meteorology, 1987: 60-92.
    [46]
    Wang B, Lin H.Rainy season of the Asian-Pacific summer monsoon.J Climate, 2002, 15:386-398. doi:  10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
    [47]
    Kiladis G N, Dias J, Straub K H, et al.A comparison of OLR and circulation-based indices for tracking the MJO.Mon Wea Rev, 2014, 142(5):1697-1715. doi:  10.1175/MWR-D-13-00301.1
    [48]
    Sun D Z, Oort A H.Humidity-temperature relationships in the tropical troposphere.J Climate, 1995, 8(8):1974-1987. doi:  10.1175/1520-0442(1995)008<1974:HRITTT>2.0.CO;2
    [49]
    Jiang X, Waliser D E.Two dominant subseasonal variability modes of the eastern Pacific ITCZ.Geophys Res Lett, 2009, 36(4):144-155. doi:  10.1029/2008GL036820/full
    [50]
    Wen M, Yang S, Higgins W, et al.Characteristics of the dominant modes of atmospheric quasi-biweekly oscillation over tropical-subtropical Americas.J Climate, 2011, 24(15):3956-3970. doi:  10.1175/2011JCLI3916.1
    [51]
    杨双艳, 武炳义, 胡景高, 等.大气准双周振荡的研究进展.大气科学学报, 2015, 38(6):855-864. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njqxxyxb201506015
  • 加载中
  • -->

Catalog

    Figures(10)

    Article views (1481) PDF downloads(102) Cited by()
    • Received : 2020-07-06
    • Accepted : 2020-08-20
    • Published : 2020-10-27

    /

    DownLoad:  Full-Size Img  PowerPoint