Li Yu, Ma Shuqing, Yang Ling, et al. Wind field verification for array weather radar at Changsha Airport. J Appl Meteor Sci, 2020, 31(6): 681-693. DOI:  10.11898/1001-7313.20200604.
Citation: Li Yu, Ma Shuqing, Yang Ling, et al. Wind field verification for array weather radar at Changsha Airport. J Appl Meteor Sci, 2020, 31(6): 681-693. DOI:  10.11898/1001-7313.20200604.

Wind Field Verification for Array Weather Radar at Changsha Airport

DOI: 10.11898/1001-7313.20200604
  • Received Date: 2020-06-15
  • Rev Recd Date: 2020-08-31
  • Publish Date: 2020-10-27
  • Synthesizing or retrieving the radial velocity of weather radar can obtain a three-dimensional wind field, which is an important research direction in radar meteorology. A fine three-dimensional wind field helps to study the structure and motion characteristics of small-scale and meso-scale weather systems. Array weather radar (AWR) consists of three-phased array transmit-receive subarrays (referred as transceiver subarrays), which is used for synchronous detection. AWR data are of high temporal and spatial resolution, thus ensuring the correctness of wind field synthesis and retrieval.According to domestic and aboard research, three-dimensional variational data assimilation (3DVAR) wind field retrieval algorithm is quite mature. Using AWR data of 10 rainfall cases at Changsha airport from April to September in 2019, the wind field is retrieved and evaluated. In the three-dimensional fine detection area of the AWR, detection data of a L-band boundary layer wind profile radar and the AWR synthetic wind field are used as reference value to evaluate the retrieved wind field.Results show that the retrieved wind field, the synthetic wind field, and wind profile radar product are more consistent and reasonable in stable precipitation process. In addition, the result error is larger in convective precipitation. The unevenness of the environmental wind field in convective precipitation can reduce the accuracy of wind measurement, and therefore it is not enough to explain the rationality of the AWR retrieved wind field. The wind profile radar is quite different from the AWR retrieved and the synthetic wind field. For different precipitation types, the wind field structure retrieved by AWR and the wind field obtained by AWR synthetic wind field are consistent with the basic characteristics of various weather systems. The spatial distribution and size direction of the horizontal wind field of two algorithms are very close. Error results show that the relative deviation of horizontal wind speed in the stable and convective precipitation is less than 19% and 29%, and the difference of horizontal wind direction is lower than 14.92° and 26.35°, respectively. The error is within the acceptable range. Compared with the AWR synthetic wind field, the retrieved wind field result during stable precipitation process is better than that during convective precipitation process.
  • Fig. 1  Deployment diagram and spatial detection schematic diagram of the AWR consisting of three transmit-receive subarrays

    (the red rectangle denotes the 3DVAR wind field retrieval area, the red dot denotes the wind profile radar station at the airport)

    Fig. 2  Horizontal wind field at different heights during 1530—1730 BT on 12 May 2019

    (a)wind profile radar products, (b)the AWR retrieval wind field, (c)the AWR synthetic wind field

    Fig. 3  Horizontal wind field at different heights during 1800—2000 BT on 18 Aug 2019

    (a)wind profile radar products, (b)the AWR retrieval wind field, (c)the AWR synthetic wind field

    Fig. 4  Error charts of 5 stable precipitation cases

    (a)horizontal wind speed root mean square error, (b)horizontal wind speed relative root mean square error, (c)horizontal wind direction root mean square error

    Fig. 5  Horizontal wind for the AWR synthetic wind field and the AWR retrieved wind field at 170512 BT 25 Aug 2019 (the shaded is the reflectivity factor)

    (a)the AWR synthetic wind field, 3 km height, (b)the AWR retrieved wind field, 3 km height, (c)the AWR synthetic wind field, 5 km height, (d)the AWR retrieved wind field, 5 km height

    Fig. 6  Error charts of 5 stable precipitation cases

    (a)horizontal wind speed root mean square error, (b)horizontal wind speed relative root mean square error, (c)horizontal wind direction root mean square error

    Fig. 7  Horizontal wind for the AWR synthetic wind field and the AWR retrieved wind field at 145200 BT 21 Aug 2019 (the shaded is reflectivity factor)

    (a)the AWR synthetic wind field, 3 km height, (b)the AWR retrieved wind field, 3 km height, (c)the AWR synthetic wind field, 5 km height, (d)the AWR retrieved wind field, 5 km height

    Table  1  Precipitation cases and description

    降水个例 时间 降水类型 与风廓线雷达产品对比时段 对比分析时刻
    1 2019-04-26T17:50—20:00 对流性降水 18:00—20:00 19:00:00
    2 2019-04-29T13:00—14:30 稳定性降水 13:15—14:15 13:35:12
    3 2019-05-12T15:30—18:00 稳定性降水 15:30—17:30 16:30:00
    4 2019-06-01T13:00—14:30 稳定性降水 13:00—13:50 13:20:00
    5 2019-07-12T12:20—14:30 稳定性降水 12:25—13:05 12:47:12
    6 2019-07-19T14:00—15:50 对流性降水 14:30—15:20 14:50:00
    7 2019-08-18T18:00—19:30 对流性降水 18:35—19:05 18:55:12
    8 2019-08-21T14:00—16:00 对流性降水 降水回波未经过风廓线 14:52:00
    9 2019-08-25T16:50—18:20 稳定性降水 16:55—17:15 17:05:12
    10 2019-09-10T17:50—19:00 对流性降水 18:00—18:30 18:15:12
    DownLoad: Download CSV

    Table  2  Radial velocity consistency analysis of the midpoint position on the connecting line of different subarrays

    高度/km A点径向速度/(m·s-1) B点径向速度/(m·s-1) C点径向速度/(m·s-1)
    子阵1 子阵2 子阵1 子阵3 子阵2 子阵3
    1.0 2.43 -2.53 7.62 -8.09 5.64 -6.75
    1.5 -11.86 9.84 6.58 -5.18 7.19 -7.42
    2.0 -19.41 17.30 -14.17 12.03 6.70 -8.09
    2.5 -19.13 17.66 -18.94 16.59 3.02 -4.69
    3.0 -20.48 18.60 -21.43 18.92 4.60 -5.24
    3.5 -19.46 17.13 -20.98 18.95 2.46 -3.06
    4.0 -17.84 16.89 -19.78 17.38 1.97 -1.63
    4.5 -17.25 16.34 -16.56 15.67 2.94 -3.85
    5.0 -15.94 14.04 -15.50 15.84 2.99 -3.55
    DownLoad: Download CSV

    Table  3  Mean absolute deviation, root mean square error and relative root mean square error of horizontal wind speed and direction of the AWR retrieved wind field and wind profile radar products in the case analysis period

    降水个例 分析时段 水平风速 水平风向
    平均绝对偏差/ (m·s-1) 均方根误差/ (m·s-1) 相对均方根误差/% 平均绝对偏差/(°) 均方根误差/(°)
    2 2019-04-29T13:15—14:15 2.85 3.27 24 7.15 10.06
    3 2019-05-12T15:30—17:30 3.74 3.21 20 10.81 15.87
    4 2019-06-01T13:00—13:50 3.96 3.48 29 9.19 15.55
    5 2019-07-12T12:25—13:05 2.10 2.91 19 5.72 7.56
    9 2019-08-25T16:55—17:15 1.28 3.92 31 9.42 17.49
    DownLoad: Download CSV

    Table  4  Mean absolute deviation, root mean square error and relative root mean square error of horizontal wind speed and direction of the AWR retrieved wind and wind profile radar products in the case analysis period

    降水个例 分析时段 水平风速 水平风向
    平均绝对偏差/ (m·s-1) 均方根误差/ (m·s-1) 相对均方根误差/% 平均绝对偏差/(°) 均方根误差/(°)
    1 2019-04-26T18:00—20:00 2.07 3.47 44 47.60 41.46
    6 2019-07-19T14:30—15:20 1.96 2.66 56 42.82 33.88
    7 2019-08-18T18:35—19:05 2.94 5.57 55 55.89 58.24
    10 2019-09-10T18:00—18:30 1.52 4.54 73 39.79 52.89
    DownLoad: Download CSV
  • [1]
    Armijo L.A theory for the determination of wind and precipitation velocities with Doppler radars.J Atmos Sci, 1969, 26(3):570-573. doi:  10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2
    [2]
    Ray P S, Ziegler C L, Bumgarner W, et al.Single and multiple-Doppler radar observations of tornadic storms.Mon Wea Rev, 1980, 108(10):1607-1625. doi:  10.1175/1520-0493(1980)108<1607:SAMDRO>2.0.CO;2
    [3]
    韩颂雨, 罗昌荣, 魏鸣, 等.三雷达、双雷达反演降雹超级单体风暴三维风场结构特征研究.气象学报, 2017, 75(5):757-770. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201705006
    [4]
    Lhermitte R M, Gilet M.Dual-Doppler radar observation and study of sea breeze convective storm development.J Appl Meteor, 2010, 14(7):1346-1361. http://adsabs.harvard.edu/abs/1975JApMe..14.1346L
    [5]
    Chong M, Amayenc P, Scialom G, et al.A tropical squall line observed during the COPT 81 experiment in West Africa.Part 1:Kinematic structure inferred from dual-Doppler radar data.Mon Wea Rev, 1987, 115(3):1696. http://onlinelibrary.wiley.com/resolve/reference/ADS?id=1987MWRv..115..670C
    [6]
    Fankhauser J C, Barnes G M, Lemone M A.Structure of a midlatitude squall line formed in strong unidirectional shear.Mon Wea Rev, 1992, 120(2):237-260. doi:  10.1175/1520-0493(1992)120<0237:SOAMSL>2.0.CO;2
    [7]
    刘黎平.用双多普勒雷达反演降水系统三维风场试验研究.应用气象学报, 2003, 14(4):502-504. http://qikan.camscma.cn/article/id/20030463
    [8]
    刘黎平, 张沛源, 梁海河, 等.双多普勒雷达风场反演误差和资料的质量控制.应用气象学报, 2003, 14(1):17-29. http://qikan.camscma.cn/article/id/20030103
    [9]
    罗昌荣, 池艳珍, 周海光.双雷达反演台风外围强带状回波风场结构特征研究.大气科学, 2012, 36(2):35-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx201202003
    [10]
    Scialom G, Lemaitre Y.A new analysis for the retrieval of three-dimensional mesoscale wind fields from multiple Doppler radar.J Atmos Oceanic Technol, 1990, 7(5):640-665. doi:  10.1175/1520-0426(1990)007<0640:ANAFTR>2.0.CO;2
    [11]
    Gao J, Xue M, Shapiro A, et al.A variational method for the analysis of three-dimensional wind fields from two Doppler radars.Mon Wea Rev, 1999, 127(127):2128-2142. http://adsabs.harvard.edu/abs/1999MWRv..127.2128G
    [12]
    Gao J, Xue M, Brewster K, et al.A three-dimensional variational data analysis method with recursive filter for Doppler radars.J Atmos Oceanic Technol, 2004, 21(3):457-469. doi:  10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2
    [13]
    Liou Y C, Chang Y J.A variational multiple-Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval.Mon Wea Rev, 2009, 137(11):3992-4010. doi:  10.1175/2009MWR2980.1
    [14]
    王艳春, 王红艳, 刘黎平.华南一次强飑线过程的三维变分风场反演效果分析.暴雨灾害, 2014, 33(4):305-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbqx201404001
    [15]
    王艳春, 王红艳, 刘黎平.三维变分方法反演风场的效果检验.高原气象, 2016, 35(4):1087-1101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyqx201604022
    [16]
    Liu S, Qiu C J, Xu Q, et al.An improved method for Doppler wind and thermodynamic retrievals.Adv Atmos Sci, 2005, 22(1):90-102. doi:  10.1007/BF02930872
    [17]
    Shapiro A, Potvin C K, Gao J.Use of a vertical vorticity equation in variational dual-Doppler wind analysis.J Atmos Oceanic Technol, 2009, 26(10):2089-2106. doi:  10.1175/2009JTECHA1256.1
    [18]
    Potvin C K, Shapiro A, Xue M.Impact of a vertical vorticity constraint in variational dual-Doppler wind analysis:Tests with real and simulated supercell data.J Atmos Oceanic Technol, 2011, 29(29):32-49. http://adsabs.harvard.edu/abs/2012JAtOT..29...32P
    [19]
    张沛源, 周海光, 胡绍萍.双多普勒天气雷达风场探测的可靠性研究.应用气象学报, 2002, 13(4):485-496. http://qikan.camscma.cn/article/id/20020464
    [20]
    马舒庆, 陈洪滨, 王国荣, 等.阵列天气雷达设计与初步实现.应用气象学报, 2019, 30(1):1-12. doi:  10.11898/1001-7313.20190101
    [21]
    张沛源, 何平, 宋春梅, 等.三部多普勒天气雷达联合测量大气风场的误差分布及最佳布局研究.气象学报, 1998, 56(1):96-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800465454
    [22]
    魏万益, 马舒庆, 杨玲, 等.长沙机场阵列天气雷达地物识别算法.应用气象学报, 2020, 31(3):339-349. doi:  10.11898/1001-7313.20200308
    [23]
    Shapiro A, Ellis S, Shaw J.Single-Doppler velocity retrievals with phoenix Ⅱ data:Clear air and microburst wind retrievals in the planetary boundary layer.J Atmos Sci, 1995, 52(9):1265-1287. doi:  10.1175/1520-0469(1995)052<1265:SDVRWP>2.0.CO;2
    [24]
    North K W, Oue M, Kollias P, et al.Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E.Atmospheric Measurement Techniques, 2017, 10(8):2785-2806. doi:  10.5194/amt-10-2785-2017
    [25]
    Fang M, Dovial R J, Melnikov V.Spectrum width measured by WSR-88D:Error sources and statistics of various weather phenomena.J Atmos Oceanic Technol, 2004, 21(6):888-904. doi:  10.1175/1520-0426(2004)021<0888:SWMBWE>2.0.CO;2
    [26]
    王欣, 卞林根, 彭浩, 等.风廓线仪系统探测试验与应用.应用气象学报, 2005, 16(5):693-698. http://qikan.camscma.cn/article/id/20050590
    [27]
    林晓萌, 何平, 黄兴友.一种抑制降水对风廓线雷达水平风干扰的方法.应用气象学报, 2015, 26(1):66-75. doi:  10.11898/1001-7313.20150107
    [28]
    林晓萌, 尉英华, 陈宏, 等.降水时风廓线雷达风场反演效果评估.应用气象学报, 2020, 31(3):361-372. doi:  10.11898/1001-7313.20200310
    [29]
    邓闯, 阮征, 魏鸣, 等.风廓线雷达测风精度评估.应用气象学报, 2012, 23(5):13-23. http://qikan.camscma.cn/article/id/20120502
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(4)

    Article views (1496) PDF downloads(179) Cited by()
    • Received : 2020-06-15
    • Accepted : 2020-08-31
    • Published : 2020-10-27

    /

    DownLoad:  Full-Size Img  PowerPoint