Chen Ze, Tian Yufang, Lü Daren. Improving the processing algorithm of Beijing MST radar power spectral density data. J Appl Meteor Sci, 2020, 31(6): 694-705. DOI:  10.11898/1001-7313.20200605.
Citation: Chen Ze, Tian Yufang, Lü Daren. Improving the processing algorithm of Beijing MST radar power spectral density data. J Appl Meteor Sci, 2020, 31(6): 694-705. DOI:  10.11898/1001-7313.20200605.

Improving the Processing Algorithm of Beijing MST Radar Power Spectral Density Data

DOI: 10.11898/1001-7313.20200605
  • Received Date: 2020-04-17
  • Rev Recd Date: 2020-08-10
  • Publish Date: 2020-10-27
  • Beijing MST radar is a unique large instrument for atmospheric dynamic structure detection in Chinese Meridian Project. It plays an essential role in the in-depth understanding of the vertical structure of atmospheric wind, waves and turbulence in the troposphere, lower stratosphere, mesosphere, and lower thermosphere in North China. Since the completion of Beijing MST radar in 2011, wind data have been well acquired. However, there is still a need for improving the extraction of some elements. To achieve this goal, the power spectral density data processing algorithms is improved mainly from two aspects including accurate noise level estimation and target signal recognition. The improved algorithm derived data, radar products, radiosonde data and ERA5 reanalysis data from 1 January to 31 December in 2012 are statistically analyzed and compared. A log-linear fitting scheme is put forward and applied to realize rapid implementation of objective determination of the noise level. The root mean square error(RMSE) of noise values between the log-linear fitting and the conventional scheme is about 0.43 dB and mean values are 168.6 dB and 168.5 dB, respectively. Results show that the noise level estimation can be fast and accurate using the log-linear fitting scheme. Based on the property that atmospheric signals have spatio-temporal consistency and diffident signals show different spectral characteristics, the target signal can be accurately identified and extracted by the improved algorithms. The RMSE of zonal wind speed between the improved algorithm derived data and radiosonde data at different height are in the range of 2-3 m·s-1 while the RMSE of zonal wind speed between radar products and radiosonde data at different height are 3-4 m·s-1. Moreover, the mean value of the spectral width derived by the improved algorithm is 2.5 m·s-1, which is less than the mean value of radar products. Under precipitation weather condition, the mean bias and RMSE of horizontal wind speed between the improved algorithm derived data and radiosonde data at different height are both less than values between radar products and radiosonde data. Results show that the improved algorithm can reduce non-atmospheric signals such as noise and intermittent clutter and effectively suppress signals caused by precipitation. Thus the effectiveness and reliability of the improved algorithm are verified, and it is relatively easy to implement.
  • Fig. 1  Beijing MST radar raw and preprocessed power spectral density and averaged noise value estimated by objective method and segment method at 0010 UTC 4 Jan 2012(eastern beam at height of 15 km)

    Fig. 2  R2 and lgR2 varying with dP using Beijing MST radar at 1510 UTC 16 Mar 2012

    Fig. 3  The comparison of noise level estimated by log-linear scheme and dichotomy scheme using power spectral density at 7.8-12 km height of Beijing MST radar in May 2012

    Fig. 4  Power spectral density of eastern and western beams at 5 heights of Beijing MST radar data processed by improved algorithm at 0010 UTC 4 Jan 2012(bold curve denotes recognized target echo)

    Fig. 5  Comparison of the horizontal wind speed and wind direction between radiosonde(1115 UTC) and Beijing MST radar products before and after improved algorithm processed(1140 UTC) on 16 Mar 2012

    Fig. 6  Comparison of annual mean(the curve) and standard deviation(the shaded) of SNR(a) and spectral width(b) between Beijing MST radar data(from 1 Jan to 31 Dec in 2012) obtained using original and improved algorithms

    Fig. 7  Comparison of the zonal and meridional wind between radiosonde and Beijing MST radar data obtained using original and improved algorithms from 1 Jan to 31 Dec in 2012

    Fig. 8  Comparison of the vertical velocity between ERA5 reanalysis and Beijing MST radar data obtained using original and improved algorithms from 1 Jan to 31 Dec in 2012

    Fig. 9  Comparison of mean values and root mean square error of zonal and meridional wind between radiosonde and Beijing MST radar data obtained using original and improved algorithms under 16-group precipitation weather conditions in 2012

  • [1]
    Capon J.High-resolution frequency-wavenumber spectrum analysis.Proceedings of the IEEE, 1969, 57(8):1408-1418. doi:  10.1109/PROC.1969.7278
    [2]
    Takao K, Fujita M, Nishi T.Adaptive antenna-array under directional constraint.IEEE Trans Antennas Propag, 1976, 24(5):662-669. doi:  10.1109/TAP.1976.1141411
    [3]
    Hudson J E.Adaptive Array Principles.Stevenage, UK, 1981.
    [4]
    Cox H, Zeskind R M, Owen M M.Robust adaptive beamforming.IEEE Transactions on Acoustics Speech and Signal Processing, 1987, 35(10):1365-1376. doi:  10.1109/TASSP.1987.1165054
    [5]
    Kamio K, Sato T.An adaptive sidelobe cancellation algorithm for high-gain antenna arrays.Electronics and Communications in Japan Part I-Communications, 2004, 87(3):11-18. doi:  10.1002/ecja.10178
    [6]
    Nishimura K, Nakamura T, Sato T, et al.Adaptive beamforming technique for accurate vertical wind measurements with multichannel MST radar.J Atmos Oceanic Technol, 2012, 29(12):1769-1775. doi:  10.1175/JTECH-D-11-00211.1
    [7]
    Curtis C D, Yeary M, Lake J L.Adaptive nullforming to mitigate ground clutter on the national weather radar testbed phased array radar.IEEE Transa Geosci Remote Sens, 2016, 54(3):1282-1291. doi:  10.1109/TGRS.2015.2477300
    [8]
    Hashimoto T, Nishimura K, Tsutsumi M, et al.A user parameter-free diagonal-loading scheme for clutter rejection on radar wind profilers.J Atmos Oceanic Technol, 2017, 34(5):1139-1153. doi:  10.1175/JTECH-D-16-0058.1
    [9]
    钟刘军, 阮征, 葛润生, 等.风廓线雷达回波信号强度定标方法.应用气象学报, 2010, 21(5):598-605. http://qikan.camscma.cn/article/id/20100509
    [10]
    王莎, 阮征, 葛润生.风廓线雷达探测大气返回信号谱的仿真模拟.应用气象学报, 2012, 23(1):20-29. http://qikan.camscma.cn/article/id/20120103
    [11]
    Blackman R B, Tukey J W.The measurement of power spectra from the point of view of communications engineering.1.Bell System Technical Journal, 1958, 37(1):185-282. doi:  10.1002/j.1538-7305.1958.tb03874.x
    [12]
    Blackman R B, Tukey J W.The measurement of power spectra from the point of view of communications engineering.2.Bell System Technical Journal, 1958, 37(2):485-569. doi:  10.1002/j.1538-7305.1958.tb01530.x
    [13]
    Passarelli R E, Romanik P, Geotis S G, et al.Ground Clutter Rejection in the Frequency Domain//20th Conf on Radar Meteorology, 1981: 295-300.
    [14]
    Sato T, Woodman R F.Spectral parameter-estimation of cat radar echoes in the presence of fading clutter.Radio Sci, 1982, 17(4):817-826. doi:  10.1029/RS017i004p00817
    [15]
    Donoho D L, Johnstone J M.Ideal spatial adaptation by wavelet shrinkage.Biometrika, 1994, 81(3):425-455. doi:  10.1093/biomet/81.3.425
    [16]
    Burg J P.Maximum entropy spectral analysis.Journal of China Institute of Communications, 1982, 17(4):1519-1533. http://sepwww.stanford.edu/data/media/public/docs/sep134/jim2/paper.pdf
    [17]
    Clothiaux E E, Penc R S, Thomson D W, et al.A first-guess feature-based algorithm for estimating wind speed in clear-air Doppler radar spectra.J Atmos Oceanic Technol, 1994, 11(4):888-908. doi:  10.1175/1520-0426(1994)011<0888:AFGFBA>2.0.CO;2
    [18]
    Morse C S.The NIMA method for improved moment estimation from Doppler spectra.J Atmos Oceanic Technol, 2002, 19(3):274-295. doi:  10.1175/1520-0426-19.3.274
    [19]
    朱斌, 高仲辉.风廓线雷达探测系统中的谱数据处理.现代雷达, 2003, 25(11):24-26;30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdld200311007
    [20]
    胡明宝.风廓线雷达数据处理与应用研究.南京: 南京信息工程大学, 2012.
    [21]
    胡明宝, 李妙英, 贺宏兵.用综合识别法检测风廓线雷达湍流目标.系统工程与电子技术, 2012, 34(5):903-908. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgcydzjs201205009
    [22]
    Griesser T, Richner H.Multiple peak processing algorithm for identification of atmospheric signals in Doppler radar wind profiler spectra.Meteorologische Zeitschrif, 1998, 7(6):292-302. doi:  10.1127/metz/7/1998/292
    [23]
    吴蕾.风廓线雷达探测性能分析及谱矩参数应用研究.北京: 中国科学院大气物理研究所, 2011.
    [24]
    周旭辉.风廓线雷达功率谱密度数据处理算法研究.南京: 南京信息工程大学, 2011.
    [25]
    周旭辉, 马杰良, 吴蕾, 等.基于正交多项式拟合的风廓线雷达风谱识别.现代雷达, 2011, 33(11):27-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdld201111007
    [26]
    惠建新, 吴蕾, 高玉春, 等.基于极大似然算法的风廓线雷达谱矩估计.气象科技, 2012, 40(1):11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj201201003
    [27]
    林晓萌, 何平, 黄兴友.一种抑制降水对风廓线雷达水平风干扰的方法.应用气象学报, 2015, 26(1):66-75. doi:  10.11898/1001-7313.20150107
    [28]
    陈浩君, 黄兴友, 孙婧, 等.基于径向功率谱的风廓线雷达错误风数据处理.应用气象学报, 2015, 26(4):460-471. doi:  10.11898/1001-7313.20150408
    [29]
    张福贵, 范潇, 何建新.自适应阈值方法去除风廓线雷达地物杂波.应用气象学报, 2015, 26(4):472-481. doi:  10.11898/1001-7313.20150409
    [30]
    高祝宇, 阮征, 魏鸣, 等.风廓线雷达数据质量影响因子及处理算法.应用气象学报, 2016, 27(2):148-159. doi:  10.11898/1001-7313.20160203
    [31]
    Hildebrand P H, Sekhon R S.Objective determination of the noise level in Doppler spectra.J Appl Meteorol, 1974, 13(7):808-811. doi:  10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2
    [32]
    Petitdidier M, Sy A, Garrouste A, et al.Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers.Radio Sci, 1997, 32(3):1229-1247. doi:  10.1029/97RS00250
    [33]
    Sekhon R S, Srivastava R C.Doppler radar observations of drop-size distributions in a thunderstorm.J Atmos Sci, 1971, 28(6):983-994. doi:  10.1175/1520-0469(1971)028<0983:DROODS>2.0.CO;2
    [34]
    何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. http://qikan.camscma.cn/article/id/20130305
    [35]
    Tian Y F, Lu D R.Comparison of Beijing MST radar and radiosonde horizontal wind measurements.Adv Atmos Sci, 2017, 34(1):39-53. doi:  10.1007/s00376-016-6129-4
    [36]
    田玉芳, 吕达仁.北京MST雷达探测中间层-低热层观测结果初步分析.地球物理学报, 2016, 59(2):440-452. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201602004
    [37]
    Sinha S, Regeena M, Sarma T, et al.Spectral feature-based classification of wind profiler power spectra.IEEE Trans Geosci Remote Sens, 2018, 56(4):2138-2146. doi:  10.1109/TGRS.2017.2775654
    [38]
    阮征, 葛润生, 吴志根.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(3):330-338. http://qikan.camscma.cn/article/id/20020343
    [39]
    何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. http://qikan.camscma.cn/article/id/200904011
    [40]
    Rao D N, Rao T N, Venkataratnam M, et al.Diurnal and seasonal variability of turbulence parameters observed with Indian mesosphere-stratosphere-troposphere radar.Radio Sci, 2001, 36(6):1439-1457. doi:  10.1029/2000RS002316
    [41]
    Murphy D J, Hocking W K, Fritts D C.An assessment of the effect of gravity waves on the width of radar Doppler spectra.J Atmos Terr Phys, 1994, 56(1):17-29. doi:  10.1016/0021-9169(94)90172-4
    [42]
    Yamamoto M, Sato T, May P T, et al.Estimation error parameters of mesosphere-stratosphere-troposphere radars obtained by least squares fitting method and its lower bound.Radio Sci, 1988, 23(6):1013-1021. doi:  10.1029/RS023i006p01013
    [43]
    Wilson R, Luce H, Hashiguchi H, et al.Energetics of persistent turbulent layers underneath mid-level clouds estimated from concurrent radar and radiosonde data.J Atmos Sol-Terr Phys, 2014, 118(1):78-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eaa9d4e06de6eda1324851514eef316f
    [44]
    Woodman R F.Spectral moment estimation in MST radars.Radio Sci, 1985, 20(6):1185-1195. doi:  10.1029/RS020i006p01185
    [45]
    何平.相控阵风廓线雷达.北京:气象出版社, 2006.
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (1252) PDF downloads(88) Cited by()
    • Received : 2020-04-17
    • Accepted : 2020-08-10
    • Published : 2020-10-27

    /

    DownLoad:  Full-Size Img  PowerPoint