Fu Peiling, Hu Dongming, Huang Hao, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. DOI:  10.11898/1001-7313.20200606.
Citation: Fu Peiling, Hu Dongming, Huang Hao, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. DOI:  10.11898/1001-7313.20200606.

Observation of A Tornado Event in Outside-region of Typhoon Mangkhut by X-band Polarimetric Phased Array Radar in 2018

DOI: 10.11898/1001-7313.20200606
  • Received Date: 2020-06-10
  • Rev Recd Date: 2020-08-12
  • Publish Date: 2020-10-27
  • It is well realized that the phased array radar provides fine information for meso-scale weather system, e.g., tornados. The detecting capability of Guangzhou X-band polarimetric phased array radar for severe storms is investigated, focusing on a violent tornado induced by a miniature supercell in the outer rain band of typhoon Mangkhut near Foshan on 17 September 2018 after Mangkhut's landfall. The rare complete typical tornado is captured, which is of category 2 on the enhanced Fujita scale (EF2), and it lasts for 23 minutes and causes great national economy loss.The structure, evolution and environmental conditions of the tornadic miniature supercell are discussed based on coastal Doppler S-band radar measurements. Environment conditions in the outer rain band are consistent with those of typhoon tornadoes in previous studies, with moderate convection effective potential energy and large shear below 3 km. S-band radar analysis indicate that this tornadic, miniature supercell exhibits characteristics similar to those found in landfalling hurricanes, including a hook echo, a small and shallow mesocyclone, and a relative long lifespan (~3 h).However, limited by beam blockage and resolution, further tornadic features are only observed by Guangzhou X-band polarimetric phased array radar. With the strengthening of inflow from right rear of the miniature supercell, hook echo is formed when the tornado occurs in the shallow and strong mesocyclone with the depth below the height of 2-3 km. It touches down when its parent circulation reaches its peak intensity of about 21 m·s-1. Along with intensifying of strength and contraction of couplet diameter, the height of the rotation declines below 1 km and characteristics of tornado vortex signature (TVS) are detected. The echo eye of weak echo region indicating the tornado eye is first observed. The X-band phased array radar shows great advantage in tornado observation, capturing some key characteristics of tornado evolution: Continually declining strong meso-cyclone and the appearance of TVS. The strengthening and deepening of TVS and the appearance of weak echo eye is highly likely to indicate the increase of tornado intensity. Data observed in the experiment and the preliminary results will be used in studies of tornado mechanism.

  • Fig. 1  Composite reflectivity and track of typhoon Mangkhut at 0930 BT 17 Sep 2018

    black rectangle indicates the region where tornado occurred, tropical cyclone symbols are marked with time and minimum pressure, the red tropical cyclone symbol is at 0900 BT, with the straight distance of 447 km to mesocyclone at 0942 BT

    Fig. 2  Geopotential height(the contour, unit:gpm) and wind fields on 17 Sep 2018 (a)500 hPa, 0200 BT, (b)500 hPa, 0800 BT, (c)850 hPa, 0200 BT, (d)850 hPa, 0800 BT

    the shaded represents precipitable water in Fig. 2a and Fig. 2b and wind speed in Fig. 2c and Fig. 2d

    Fig. 3  Radar reflectivity at 1.5° elevation angle from Guangzhou Doppler radar during 0912-0942 BT on 17 Sep 2018

    the position of EF2 tornado is indicated by black ×

    Fig. 4  Ground-relative radial velocities at 1.5° elevation angle from Guangzhou Doppler radar during 0912-0942 BT on 17 Sep 2018

    the position of EF2 tornado is indicated by black ×

    Fig. 5  Radar reflectivity at 0.9° elevation angle from Guangzhou phased array radar during 0931-0948 BT on 17 Sep 2018

    the position of EF2 tornado is indicated by black ×

    Fig. 6  Radar reflectivity at 0.9° elevation angle from Guangzhou phased array radar during 0940-0946 BT on 17 Sep 2018

    the position of EF2 tornado is indicated by black ×

    Fig. 7  Ground-relative radial velocities at 0.9°, 2.7° and 4.5° elevation angles from Guangzhou phased array radar during 0940-0946 BT on 17 Sep 2018

    the position of EF2 tornado is indicated by black ×

    Fig. 8  Time-height profiles of rotational velocity(unit:m·s-1), couplet diameter(unit:km) and rotational velocity versus couplet diameter(unit:m·s-1·km-1) for the tornado-producing mesocyclone(0900-1000 BT on 17 Sep 2018)

    tornado presence through visual and damage track records is indicated by the black line, EF2 tornado is indicated by black dot

    Fig. 9  Measurements of Guangzhou phased array radar at 0.9° elevation angle at 094423 BT 17 Sep 2018

    Table  1  Parameters of Guangzhou phased array radar

    性能指标 参数
    工作体制 一维电子相控扫描
    最大探测距离 42 km
    测速范围(单PRF) ±26 m·s-1
    体扫模式 水平:0~360°,
    垂直: 0~30° (17层等间隔)
    极化方式 水平、垂直双极化
    波束宽度H/V 3.6°/1.8°
    发射机峰值功率 256 W
    脉冲宽度 20 μs
    脉冲重复频率 400~4000 Hz
    灵敏度 110 dBm(@1 MHz)
    噪声系数 ≤3.3 dB
    动态范围 ≥85 dB
    径向最大分辨率 30 m
    DownLoad: Download CSV
  • [1]
    黄先香, 俞小鼎, 利军, 等.广东两次台风龙卷的环境背景和雷达回波对比.应用气象学报, 2018, 29(1):70-83. doi:  10.11898/1001-7313.20180107
    [2]
    李兆慧, 王东海, 麦雪湖, 等.2015年10月4日佛山龙卷过程的观测分析.气象学报, 2017, 75(2):288-313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb201702008
    [3]
    肖柳斯, 谌志刚, 胡东明, 等.强台风"彩虹"衍生的龙卷风特征分析.气象与环境学报, 2017, 33(3):21-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lnqx201703003
    [4]
    陈元昭, 俞小鼎, 陈训来, 等.2015年5月华南一次龙卷过程观测分析.应用气象学报, 2016, 27(3):334-341. doi:  10.11898/1001-7313.20160308
    [5]
    蒋汝庚.龙卷型强风暴——1995年4月19日洪奇沥龙卷风剖析.应用气象学报, 1997, 8(4):492-497. http://qikan.camscma.cn/article/id/19970469
    [6]
    廖玉芳, 俞小鼎, 郭庆.一次强对流系列风暴个例的多普勒天气雷达资料分析.应用气象学报, 2003, 14(6):656-662. http://qikan.camscma.cn/article/id/20030683
    [7]
    王宁, 王婷婷, 张硕, 等.东北冷涡背景下一次龙卷过程的观测分析.应用气象学报, 2014, 25(4):463-469. http://qikan.camscma.cn/article/id/20140409
    [8]
    杨伟, 方阳, 蒋帅, 等.2017年8月13日东洞庭湖水龙卷特征.应用气象学报, 2016, 27(3):334-341. doi:  10.11898/1001-7313.20200307
    [9]
    陈联寿, 丁一汇.西太平洋台风概论.北京:科学出版社, 1979.
    [10]
    李彩玲, 杨宇声, 郑启康, 等.一次台风暴雨中的龙卷风天气.广东气象, 2007, 29(3):26-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdqx200703008
    [11]
    黄先香, 炎利军, 王硕甫, 等.佛山市龙卷风活动的特征及环流背景分析.广东气象, 2014, 36(3):20-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdqx201403004
    [12]
    许薇, 梁宏升, 陈欢欢.2011年6月16日汕头龙卷天气过程分析.暴雨灾害, 2012, 31(2):176-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbqx201202012
    [13]
    郑媛媛, 张备, 王啸华, 等.台风龙卷的环境背景和雷达回波结构分析.气象, 2015, 41(8):942-952. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201508003
    [14]
    Suzuki O, Niino H, Ohno H, et al.Tornado-producing mini supercells associated with Typhoon 9019.Mon Wea Rev, 2000, 128(6):1868-1882. doi:  10.1175/1520-0493(2000)128<1868:TPMSAW>2.0.CO;2
    [15]
    Mccaul E W, Buechler D E, Goodman S J, et al.Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes.Mon Wea Rev, 2004, 132(7):1747-1763. doi:  10.1175/1520-0493(2004)132<1747:DRALNO>2.0.CO;2
    [16]
    Schneider D, Sharp S.Radar signatures of tropical cyclone tornadoes in central North Carolina.Wea Forecasting, 2007, 22(2):278-286. doi:  10.1175/WAF992.1
    [17]
    Zhao K, Wang M J, Xue M, et al.Doppler radar analysis of a tornadic miniature supercell during the landfall of Typhoon Mujigae (2015) in South China.Bull Amer Meteor Soc, 2017, 98(9):1821-1831. doi:  10.1175/BAMS-D-15-00301.1
    [18]
    何彩芬, 姚秀萍, 胡春蕾, 等.一次台风前部龙卷的多普勒天气雷达分析.应用气象学报, 2006, 17(3):370-375. http://qikan.camscma.cn/article/id/20060363
    [19]
    蒋义芳, 吴海英, 沈树勤, 等.0808号台风凤凰前部龙卷的环境场和雷达回波分析.气象, 2009, 35(4):68-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx200904009
    [20]
    Wurman J, GillI S.Finescale radar observations of the Dimmitt, Texas(2 June 1995), tornado.Mon Wea Rev, 2000, 128(7):2135-2164. doi:  10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2
    [21]
    Blustein H B, Lee W C, Bell M, et al.Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999.Part Ⅱ:Tornado-vortex structure.Mon Wea Rev, 2003, 131(12):2968-2984. doi:  10.1175/1520-0493(2003)131<2968:MDROOA>2.0.CO;2
    [22]
    张志强, 刘黎平.S波段相控阵天气雷达与新一代天气雷达探测云回波强度及结构误差的模拟分析.气象学报, 2011, 69(4):729-735. http://www.cqvip.com/QK/90056X/201104/39529254.html
    [23]
    刘黎平, 胡志群, 吴翀.双线偏振雷达和相控阵天气雷达技术的发展和应用.气象科技进展, 2016, 6(3):28-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkjjz201603005
    [24]
    吴翀, 刘黎平, 汪旭东, 等.相控阵雷达扫描方式对回波强度测量的影响.应用气象学报, 2014, 25(4):406-414. http://qikan.camscma.cn/article/id/20140403
    [25]
    马舒庆, 陈洪滨, 王国荣, 等.阵列天气雷达设计与初步实现.应用气象学报, 2019, 30(1):1-12. doi:  10.11898/1001-7313.20190101
    [26]
    程元慧, 傅佩玲, 胡东明, 等.广州相控阵天气雷达组网方案设计及其观测试验.气象, 2020, 46(6):823-836. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx202006009
    [27]
    黄先香, 炎利军, 王硕甫, 等.1822号"山竹"台风龙卷过程观测与预警分析.热带气象学报, 2019, 35(4):458-469. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb201904003
    [28]
    Davies-Jones R.Streamwise vorticity:The origin of updraft rotation in supercell storms.J Atmos Sci, 1984, 41(20):2991-3006. doi:  10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2
    [29]
    Stumpf G J, Witt A, Mitchell E D, et al.The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D.Wea Forecasting, 1998, 13(2):304-326. doi:  10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2
    [30]
    Wakimoto R M, Liu C, Cai H.The Garden City, Kansas, storm during VORTEX 95.Part I:Overview of the storm's life cycle and mesocyclogenesis.Mon Wea Rev, 1998, 126(2):372-392. doi:  10.1175/1520-0493(1998)126<0372:TGCKSD>2.0.CO;2
    [31]
    Brown R A, Lemon L R, Burgess D W.Tornado detection by pulsed Doppler radar.Mon Wea Rev, 1978, 106(1):29-38. doi:  10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2
    [32]
    Ryzhkov A V, Schuur T J, Burgess D W, et al.Polarimetric tornado detection.J Appl Meteor, 2005, 44(5):557-570. doi:  10.1175/JAM2235.1
    [33]
    Blustein H B, French M M, Tanamachi R L, et al.Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar.Mon Wea Rev, 2007, 135(4):1522-1543. doi:  10.1175/MWR3349.1
    [34]
    Kumjian M R, Ryzhkov A V.Polarimetric signatures in supercell thunderstorms.J Appl Meteor Climatol, 2008, 47(7):1940-1961. doi:  10.1175/2007JAMC1874.1
    [35]
    Kumjian M R, Ryzhkov A V.Storm-relative helicity revealed from polarimetric radar measurements.J Atmos Sci, 2009, 66(3):667-685. doi:  10.1175/2008JAS2815.1
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (1700) PDF downloads(179) Cited by()
    • Received : 2020-06-10
    • Accepted : 2020-08-12
    • Published : 2020-10-27

    /

    DownLoad:  Full-Size Img  PowerPoint