Tao Fa, Guan Li, Zhang Xuefen, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. DOI:  10.11898/1001-7313.20200607.
Citation: Tao Fa, Guan Li, Zhang Xuefen, et al. Variation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. DOI:  10.11898/1001-7313.20200607.

Variation and Vertical Structure of Clear-air Echo by Ka-band Cloud Radar

DOI: 10.11898/1001-7313.20200607
  • Received Date: 2020-05-08
  • Rev Recd Date: 2020-07-28
  • Publish Date: 2020-10-27
  • Ka-band cloud radar data from 2017 to 2019 in Beijing Atmosphere Observation test-bed of CMA, combining with observations of automatic weather station and ceilometer are used to analyze the variation and vertical structure of low-level clear-air echo from aspects of intensity, velocity, space scale, depolarization ratio and height of clear-air echo.Based on ceilometer and cloud radar detection sensitivity difference of particle radius and density, clouds and clear-air echo are identified, using image processing technology to distinguish the layered turbulence echo and the dot-like insect echo.Based on different scattering mechanisms, scattering characteristics of the layered turbulence echo and the dot-like insect echo are analyzed. Generally, the range of equivalent reflectivity factors in millimeter wavebands of the clear-air echo caused by atmospheric turbulence is -70 dBZ to -30 dBZ, while the dot-like insect echo reflectivity factor is greater than -30 dBZ.Results show that radar clear-air echoes mainly contain the layered turbulence echo and the dot-like insect echo in the boundary layer and the echo height is within 3000 m. The intensity and height of clear-air echoes show obvious seasonal and diurnal variation characteristics. The echo height is lower in winter and higher in summer, which is well correlated with the surface temperature. There is almost no clear-air echo when the surface temperature is below 5℃, so there is almost no clear-air echo in January, February, November and December, while the average echo height is the highest in July and August. The radar reflectivity factor of clear-air echo is within the range of -40 to -15 dBZ with mean value of -28 dBZ. As the height increases, the reflectivity factor intensity decreases gradually, the peak value of the probability density distribution function of the radar reflectivity factor for clear-air layered turbulence echo is -35 dBZ, and that of the dot-like insect echo is -30 dBZ. The vertical movement speed of clear-air echo is mainly within -1.5 to +0.5 m·s-1, and downward movement is dominant. The linear depolarization ratio value of layered turbulent echo is larger than that of dot-like insect echo, which is generally within the range of -10 to -5 dB. Within 1000 meters at the lower level, the range of linear depolarization ratio is wide and gradually narrows with the increase of height. The linear depolarization ratio of dot-like insect echoes is generally within the range of -15 to -8 dB and increases gradually with the height.
  • Fig. 1  The flow chart of clear-air echo identification and classification

    Fig. 2  The overlay graph of the reflectivity factor of cloud radar and cloud base height of ceilometer on 27 Jul 2017

    Fig. 3  Identification of cloud, layered turbulence echo and dot-like insect echo on 27 Jul 2017

    Fig. 4  Comparison between echo top-height and air temperature under clear-air condition (a)diurnal variation, (b)monthly variation

    Fig. 5  Frequency of clear-air echo reflectivity and velocity varying with altitude from 2017 to 2019

    Fig. 6  Probability density function of radar reflectivity of dot-like echo and layered turbulence echo statistics from 2017 to 2019

    Fig. 7  Distribution of probability density function for linear depolarization ratio(Ldr) of clear-air echo varying with height from 2017 to 2019

    Fig. 8  Variation of linear depolarization ratio(Ldr) with reflectivity factor probability density funciton for dot-like insect echo(the shaded) and layered turbulent echo(the contour) from 2017 to 2019

    Table  1  Performance parameters of the cloud radar

    性能名称 云雷达参数
    工作频率 34.8 GHz±200 MHz
    重复频率 4 kHz
    脉冲宽度 1 μs, 10 μs
    天线口径 1.2 m
    天线形式 卡塞格伦
    波束宽度 0.7°
    天线扫描方式 垂直天顶
    极化方式 水平、垂直极化
    距离分辨率 30 m
    时间分辨率 0.3 s
    最大探测高度 20 km
    最小可测功率 1 km处不超过-40 dBZ
    差分反射率精度 ≤0.2 dB
    线性退极化比精度 ≤0.5 dB
    速度范围 -25~+25 m·s-1
    发射峰值功率 230 W
    DownLoad: Download CSV
  • [1]
    唐英杰, 马舒庆, 杨玲, 等.云底高度的地基毫米波云雷达观测及其对比.应用气象学报, 2015, 26(6):680-687. doi:  10.11898/1001-7313.20150604
    [2]
    钟正宇, 马舒庆, 杨玲, 等.结合风廓线雷达的毫米波衰减特性初步研究.应用气象学报, 2018, 29(4):496-504. doi:  10.11898/1001-7313.20180410
    [3]
    Sekelsky S M, Mclntosh R E.Cloud observations with a polarimetric 33 GHz and 95 GHz radar.Meteorol Atmos Phys, 1996, 59:123-140. doi:  10.1007/BF01032004
    [4]
    Luke E P, Pavlos K, Johnson K L.A technique for the automatic detection of insect clutter in cloud radar returns.J Atmos Oceanic Technol, 2008, 25(9):1498-1513. doi:  10.1175/2007JTECHA953.1
    [5]
    Kenichi K.A preliminary survey of clear-air echo appearances over the Kanto plain in Japan from July to December 1997.J Atmos Oceanic Technol, 2002, 19:1063-1072. doi:  10.1175/1520-0426(2002)019<1063:APSOCA>2.0.CO;2
    [6]
    Clothiaux E E, Ackerman T P, Mace G G, et al.Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the arm cart sites.J Appl Meteor, 2000, 39:645-665. doi:  10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2
    [7]
    刘思波, 何文英, 刘红燕, 等.地基微波辐射计探测大气边界层高度方法.应用气象学报, 2015, 26(5):626-635. doi:  10.11898/1001-7313.20150512
    [8]
    Metcalf J I.Microstructure of radar echo layers in the clear atmosphere.Atmos Sci, 1974, 32:362-370. http://adsabs.harvard.edu/abs/1975JAtS...32..362M
    [9]
    Russell R W, Wilson J W.Radar-observed "fine lines" in the optically clear boundary layer:Reflectivity contributions from aerial plankton and its predators.Bound-Layer Meteor, 1997, 82(2):235-262. doi:  10.1023/A:1000237431851
    [10]
    Fabry F, Frush C, Zawadzki I, et al.On the extraction of near-surface index of refraction using radar phase measurements from ground targets.J Atmos Oceanic Technol, 1996, 14:978-987. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=625552
    [11]
    Melnikov V M, Istok M J, Westbrook J K.Asymmetric radar echo patterns from insects.J Atmos Oceanic Technol, 2014, 32(4):659-674. https://journals.ametsoc.org/jtech/article/32/4/659/4719/Asymmetric-Radar-Echo-Patterns-from-Insects
    [12]
    Martin W J, Shapiro A, et al.Discrimination of bird and insect radar echoes in clear air using high-resolution radars.J Atmos Oceanic Technol, 2006, 24(7):1215-1230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce372de742b1bb06b125989cdeba6db8
    [13]
    Melnikov V M, Doviak R J, Dusan S S, et al.Mapping bragg scatter with a polarimetric WSR-88D.J Atmos Oceanic Technol, 2011, 28(10):1273-1285. doi:  10.1175/JTECH-D-10-05048.1
    [14]
    Tatarski V I.Wave Propagation in a Turbulent Medium.New York:Mc-Graw-Hill, 1961:284-285.
    [15]
    王丽荣, 卞韬, 苏运涛, 等.晴空回波在强对流天气临近预报中的应用.应用气象学报, 2010, 21(5):607-613. http://qikan.camscma.cn/article/id/20100510
    [16]
    Wilson J W, Weckwerth T M, Vivekanandan J, et al.Boundary layer clear-air radar echoes:Origin of echoes and accuracy of derived winds.J Atmos Oceanic Technol, 1994, 11(5):1184-1205. doi:  10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2
    [17]
    阮征, 李淘, 金龙, 等.大气垂直运动对雷达估测降水的影响.应用气象学报, 2017, 28(2):200-208. doi:  10.11898/1001-7313.20170207
    [18]
    孙豪, 刘黎平, 郑佳锋.不同波段垂直指向雷达功率谱密度对比.应用气象学报, 2017, 28(4):447-457. doi:  10.11898/1001-7313.20170406
    [19]
    郑佳锋, 刘黎平, 曾正茂, 等.Ka波段毫米波云雷达数据质量控制方法.红外与毫米波学报, 2016, 35(6):749-757. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyhmb201606018
    [20]
    冷亮, 黄兴友, 杨洪平, 等.多普勒雷达晴空回波识别与应用.气象科技, 2012, 40(4):534-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj201204004
    [21]
    Steiner M, Smith J A.Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data.J Atmos Oceanic Technol, 2002, 19(5):673-686. doi:  10.1175/1520-0426(2002)019<0673:UOTDRS>2.0.CO;2
    [22]
    Ralph F M.Using radar-measured radial vertical velocities to distinguish precipitation scattering from clear-air scattering.J Atmos Oceanic Technol, 2009, 12(2):257-267. http://adsabs.harvard.edu/abs/1995JAtOT..12..257M
    [23]
    Knight C A, Miller L J.First radar echoes from cumulus clouds.Bull Amer Meteor Soc, 1993, 74(2):179-187. doi:  10.1175/1520-0477(1993)074<0179:FREFCC>2.0.CO;2
    [24]
    黄琴, 魏鸣, 胡汉峰, 等.晴空回波的大气风温湿结构及双偏振雷达参量分析.气象, 2018, 44(4):526-537. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201804006
    [25]
    Wood C R, O'Connor E J, Hurley R A, et al.Cloud-radar observations of insects in the UK convective boundary layer.Meteorol Appl, 2010, 16(4):491-500. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f9b26e51ea42506bb849cefc5f4653c0
    [26]
    魏鸣, 秦学, 王啸华, 等.南京地区大气边界层晴空回波研究.南京气象学院学报, 2007, 30(6):737-744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njqxxyxb200706003
    [27]
    何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. http://qikan.camscma.cn/article/id/20130305
    [28]
    钟刘军, 阮征, 葛润生, 等.风廓线雷达回波信号强度定标方法.应用气象学报, 2010, 21(5):598-605. http://qikan.camscma.cn/article/id/20100509
    [29]
    盛裴轩, 毛节泰, 李建国, 等.大气物理学.北京:北京大学出版社, 2013:220-222.
    [30]
    魏浩, 胡明宝, 艾未华.微波波段大气折射率结构常数的仿真研究.气象科学, 2016, 36(5):667-673. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkx201605012
    [31]
    阮征, 何平, 葛润生.风廓线雷达对大气折射率结构常数的探测研究.大气科学, 2008, 32(1):133-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx200801012
    [32]
    王莎, 阮征, 葛润生.风廓线雷达探测大气返回信号谱的仿真模拟.应用气象学报, 2012, 23(1):20-29. http://qikan.camscma.cn/article/id/20120103
    [33]
    Martner B E, Moran K P.Using cloud radar polarization measurements to evaluate stratus cloud and insect echoes.J Geophys Res Atmos, 2001, 106:4891-4897. doi:  10.1029/2000JD900623
    [34]
    肖佩, 霍娟, 毕永恒.地基Ka波段云雷达数据质量控制方法研究分析.成都信息工程大学学报, 2018, 33(2):129-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdqxxy201802005
    [35]
    Wang Y, Zhao C F, Dong Z P, et al.Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method.Atmos Res, 2018, 202:148-155. doi:  10.1016/j.atmosres.2017.11.021
    [36]
    Wang Z, Wang Z H, Cao X Z, et al.Cloud-base height derived from a ground-based infrared sensor and a comparison with a collocated cloud radar.J Atmos Oceanic Technol, 2018, 35(4):689-704. doi:  10.1175/JTECH-D-17-0107.1
    [37]
    吴翀, 刘黎平, 翟晓春.Ka波段固态发射机体制云雷达和激光云高仪探测青藏高原夏季云底能力和效果对比分析.大气科学, 2017, 41(4):659-672. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx201704001
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(1)

    Article views (1804) PDF downloads(233) Cited by()
    • Received : 2020-05-08
    • Accepted : 2020-07-28
    • Published : 2020-10-27

    /

    DownLoad:  Full-Size Img  PowerPoint