Wang Sujuan, Cui Peng, Zhang Peng, et al. FY-3C/VIRR sea surface temperature products and quality validation. J Appl Meteor Sci, 2020, 31(6): 729-739. DOI:  10.11898/1001-7313.20200608.
Citation: Wang Sujuan, Cui Peng, Zhang Peng, et al. FY-3C/VIRR sea surface temperature products and quality validation. J Appl Meteor Sci, 2020, 31(6): 729-739. DOI:  10.11898/1001-7313.20200608.

FY-3C/VIRR Sea Surface Temperature Products and Quality Validation

DOI: 10.11898/1001-7313.20200608
  • Received Date: 2020-05-14
  • Rev Recd Date: 2020-08-05
  • Publish Date: 2020-10-27
  • Sea surface temperature (SST) products are generated at National Satellite Meteorological Center (NSMC) of China Meteorological Administration (CMA) from the visible and infrared radiometer (VIRR) on board FY-3C polar orbiting satellite. The production chain is based on FY-3C/VIRR cloud mask products and a classical multichannel SST (MCSST) algorithm is applied to derive SST in cloud-free zones. Operational MCSST procedures and products are described in detail. FY-3C/VIRR SST products are generated in satellite projection at full resolution in 5-minute granule, and in synthetic fields remapped onto a regular world grid at 0.05 degree resolution (5 km).The quality index (QI) information is delivered with each pixel to provide information about the conditions of the processing. They include in particular a quality level in the last two bits of QI (saved in a 8-bit CHAR) for each pixel defined as follows: Excellent, good, bad and unprocessed (cloud, land, no satellite data etc.). Users can select the SST data with certain quality level according to their application purposes (e.g., for climate-related studies, only the SST data with excellent quality level in the time series are used, and for identifying and tracking specific ocean features, users may be more tolerant of lower-quality SST data). The matchup database (MDB) combining FY-3C/VIRR measurements and buoy measurements is built on a routine basis. Validation methods and results are described in detail. The performance of SST retrievals is characterized with bias and root mean square error (RMSE) with respect to Reynolds L4 daily analysis (OISST). The validation bias and RMSE for FY-3C/VIRR operational granule SST with excellent quality level between January 2015 and December 2019 is found to be -0.18℃ and 0.85℃ in day-time, -0.06℃ and 0.8℃ in night-time, respectively. For day-time, the RMSE fluctuates seasonally. Some monthly RMSE is greater than 1℃ in summer. The bias at night is found fluctuating seasonally highly correlated to the black body temperature on board FY-3C since January 2016, and the SST regression coefficient (SST_COEF_V3) is used ever since then. Causes of FY-3C/VIRR SST products anomaly is analyzed, such as L1 data abnormal (e.g., single event upset), navigation error and operational running environmental error. Above all, some important reference information are provided to users for using FY-3C/VIRR SST products and FY-3C/VIRR data re-geolocation, re-calibration and products reprocessing.
  • Fig. 1  Root mean square error and determination coefficient of FY-3C/VIRR SST Algorithms with respect to in-situ SST in 2015-2019 (a)root mean square error in day-time, (b)root mean square error in night-time, (c)determination coefficient in day-time, (d)determination coefficient in night-time

    Fig. 2  Time series of validation bias and root mean square error for FY-3C/VIRR operational granule SST at excellent quality level with respect to daily OISST in 2015-2019

    Fig. 3  Time series of validation bias and root mean square error for FY-3C/VIRR granule SST at excellent quality level with respect to daily OISST in Jan 2016

    Fig. 4  Time series of validation bias and root mean square error for FY-3C/VIRR 5 km daily SST at excellent quality level with respect to daily OISST in 2015-2019

    Table  1  Monthly validation statistics for FY-3C/VIRR granule SST in Jan 2016(with respect to daily OISST)

    类型 质量等级 MCSST(业务) NLSST(重处理)
    偏差/℃ 均方根误差/℃ 偏差/℃ 均方根误差/℃
    白天 -0.31 0.81 -0.02 0.66
    -0.44 1.35 -0.56 1.14
    -2.81 2.97 -2.82 2.97
    全样本 -0.48 1.31 -0.40 1.08
    夜间 -0.32 0.84 -0.08 0.72
    -0.50 1.42 -0.59 1.24
    -3.05 3.23 -2.89 2.98
    全样本 -0.51 1.37 -0.50 1.24
    DownLoad: Download CSV
  • [1]
    Yang J, Zhang P, Lu N, et al.Improvements on global meteorological observations from the current Fengyun 3 satellites and beyond.International Journal of Digital Earth, 2012, 5(3):251-265. doi:  10.1080/17538947.2012.658666
    [2]
    杨军, 董超华.新一代风云极轨气象卫星业务新产品及应用.北京:科学出版社, 2010.
    [3]
    McClain E P, Pichel W G, Walton C C.Comparative performance of AVHRR-based multichannel sea surface temperatures.J Geophys Res, 1985, 90(11):11587-11601. doi:  10.1029/JC090iC06p11587/epdf
    [4]
    Walton C C, Pichel W G, Sapper J F, et al.The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites.J Geophys Res, 1998, 103(C12):27999-28012. doi:  10.1029/98JC02370
    [5]
    Li X, Pichel W, Maturi E, et al.Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3.Int J Remote Sens, 2001, 22(4):699-704. doi:  10.1080/01431160010013793
    [6]
    Wu X, Menzel W P, Wade G S.Estimation of sea surface temperatures using GOES-8/9 radiance measurements.Bull Amer Meteor Soc, 1999, 80:1127-1138. doi:  10.1175/1520-0477(1999)080<1127:EOSSTU>2.0.CO;2
    [7]
    Petrenko B, Ignatov A, Kihai Y, et al.Evaluation and selection of SST regression algorithms for JPSS VⅡRS.J Geophys Res Atmos, 2014, 119:4580-4599. doi:  10.1002/2013JD020637
    [8]
    Wang S, Cui P, Zhang P, et al.FY-3C/VIRR SST algorithm and cal/val activities at NSMC/CMA.Proceedings of SPIE, 2014, 1926:1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214741512
    [9]
    王素娟, 崔鹏, 冉茂农, 等.FY3A/VIRR业务海面温度产品算法改进与质量检验.气象科技, 2014, 42(5):748-752. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxkj201405004
    [10]
    王素娟, 崔鹏, 张鹏, 等.FY-3B/VIRR海表温度算法改进及精度评估.应用气象学报, 2014, 25(6):701-710. http://qikan.camscma.cn/article/id/20140606
    [11]
    OSI SAF Project Team.Algorithms Theoretical Basis Document for the Low Earth Orbiter Sea Surface Temperature Processing.[2019-12-11].http://www.osi-saf.org/lml/doc/osisaf_cdop2_ss1_atbd_leo_sst.pdf.
    [12]
    王素娟, 崔鹏, 张鹏, 等.FY-3卫星VIRR海表温度产品进展.上海航天, 2017, 34(4):79-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shht201704011
    [13]
    李俊, 方宗义.卫星气象的发展——机遇与挑战.气象, 2012, 38(2):129-146. http://qikan.cqvip.com/Qikan/Article/Detail?id=40958909
    [14]
    Xu F, Ignatov A.In situ SST quality monitor (iQuam).J Atmos Oceanic Technol, 2014, 31:164-180. doi:  10.1175/JTECH-D-13-00121.1
    [15]
    Reynolds R, Smith T, Liu C, et al.Daily high-resolution-blended analyses for SST.J Climate, 2007, 20:5473-5496. doi:  10.1175/2007JCLI1824.1
    [16]
    Kilpatrick K A, Podesta G P, Evans R.Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database.J Geophys Res, 2001, 106(C5):9179-9197. doi:  10.1029/1999JC000065
    [17]
    Petrenko B, Ignatov A, Kihai Y, et al.Clear-sky mask for the advanced clear-sky processor for oceans.J Atmos Oceanic Technol, 2010, 27:1609-1623. doi:  10.1175/2010JTECHA1413.1
    [18]
    Zhang P, Lu Q, Hu X, et al.Latest progress of the Chinese meteorological satellite program and core data processing technologies.Adv Atmos Sci, 2019, 36(9):1027-1045. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz-e201909010
    [19]
    Ignatov A.GOES-R Advanced Baseline Imager Algorithm Theoretical Basis Document for Sea Surface Temperature.[2017-05-16].http://www.goes-r.gov/products/ATBDs/baseline/baseline-SST-v2.0.pdf.
    [20]
    王素娟, 陆风, 张鹏, 等.FY2海面温度产品质量检验方法与误差分析.气象, 2013, 33(4):10-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201310011
    [21]
    Dash P, Ignatov A, Kihai Y, et al.The SST Quality Monitor (SQUAM).J Atmos Oceanic Technol, 2010, 27:1899-1917. doi:  10.1175/2010JTECHO756.1
    [22]
    Donlon C, Martin M, Stark J, et al.The operational sea surface temperature and sea ice analysis (OSTIA) system.Remote Sens Environ, 2012, 116:140-158. doi:  10.1016/j.rse.2010.10.017
    [23]
    柯宗建, 华丽娟, 钟霖浩, 等.海温异常对东亚夏季风强度先兆信号的影响.应用气象学报, 2015, 26(5):536-544. doi:  10.11898/1001-7313.20150503
    [24]
    李春晖, 刘燕, 李霞, 等.热带西北太平洋10~30 d振荡对南海夏季风影响.应用气象学报, 2016, 27(3):293-302. doi:  10.11898/1001-7313.20160304
    [25]
    陈丽娟, 袁媛, 杨明珠, 等.海温异常对东亚夏季风影响机理的研究进展.应用气象学报, 2013, 24(5):521-532. http://qikan.camscma.cn/article/id/20130502
    [26]
    魏彩英, 张晓虎, 赵现纲, 等.区域扫描模式下风云二号气象卫星姿态求解方法.应用气象学报, 2014, 25(5):592-599. http://qikan.camscma.cn/article/id/20140508
    [27]
    关敏, 吴荣华.FY-3A中分辨率光谱成像仪图像地理定位方法.应用气象学报, 2012, 23(5):534-542. http://qikan.camscma.cn/article/id/20120503
    [28]
    王素娟, 郭强, 许健民.FY-4气象卫星定位用导航星选取方法.应用气象学报, 2010, 21(2):149-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyqxxb201002003
    [29]
    徐寒烈, 胡秀清, 徐娜, 等.FY-3C/可见光红外扫描辐射计中红外通道太阳污染的识别和修正.光学精密工程, 2015, 23(7):1874-1879. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc201507010
    [30]
    谷松岩, 吴荣华, 游然.FY-3A/MWHS冷空测值受月球影响分析及修正.应用气象学报, 2015, 26(4):442-450. doi:  10.11898/1001-7313.20150406
    [31]
    刘健, 张里阳.气象卫星高空间分辨率数据的云量计算与检验.应用气象学报, 2011, 22(1):35-45. http://qikan.camscma.cn/article/id/20110104
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(1)

    Article views (1494) PDF downloads(126) Cited by()
    • Received : 2020-05-14
    • Accepted : 2020-08-05
    • Published : 2020-10-27

    /

    DownLoad:  Full-Size Img  PowerPoint