Yu Junhao, Tan Yongbo, Zheng Tianxue, et al. A three-dimensional model establishment of multiple connecting leaders initiated from tall structures. J Appl Meteor Sci, 2020, 31(6): 740-748. DOI:  10.11898/1001-7313.20200609.
Citation: Yu Junhao, Tan Yongbo, Zheng Tianxue, et al. A three-dimensional model establishment of multiple connecting leaders initiated from tall structures. J Appl Meteor Sci, 2020, 31(6): 740-748. DOI:  10.11898/1001-7313.20200609.

A Three-dimensional Model Establishment of Multiple Connecting Leaders Initiated from Tall Structures

DOI: 10.11898/1001-7313.20200609
  • Received Date: 2020-05-12
  • Rev Recd Date: 2020-07-06
  • Publish Date: 2020-10-27
  • A new model for simulating multiple upward leaders initiated from tall structures in cloud-to-ground (CG) lightning flash is established, in which the initiation and development module of are implanted in the existing 3D stochastic parameterization of leader attachment process, using electric field parallel computing technology to improve the simulation efficiency. The new model is applied to simulate real CG lightning and is compared with observation results of statistical data and leader morphological characteristics. Several model output parameters include the length of upward unconnected leaders (UULs), the inception height of UULs, horizontal distance between the strike point and the UUL's inception point, 3D distance between the nearest tip of the downward leader branches and the UUL's inception point when the UUL is initiated. Values range from 12 m to 709 m, 360 m to 600 m, 255 m to 1026 m, 326 m to 589 m, which are in high agreement with the observation. The new model can represent characteristics that UUL starts earlier than upward connected leaders (UCL) and channels of UUL are straight in a real CG lightning case F1215. It can also simulate 4 typical connecting behaviors which are observed in natural CG lightning flash, including the tip of downward leader (DL) to the tip of upward connecting leader (UCL) and the DL's tip to the lateral surface of UCL in cases where one or more upward leaders starts. The comparison with the observation proves that the simulation is reasonable to some extent and provides a basic model. By analyzing the simulated CG lightning data and morphological characteristics, it shows that the highest tower can protect a certain area of buildings nearby and attract more distant downward leader branches. The inception of multiple upward leaders and the strike point of last jump are influenced by the distribution, height of high structures and the initial position of the DL, which are of great significance to the lightning protection.
  • Fig. 1  Simulation of cloud-to-ground lightning

    Fig. 2  Model of simulated buildings

    Fig. 3  Simulation of F1215 lightning channel

    Fig. 4  Simulation of upward leaders in high building groups (a)the single connecting leader, the "tip-tip" connecting mode, (b)the single connecting leader, the "tip-side" connecting mode, (c)the multiple connecting leaders, the "tip-tip" connecting mode, (d)the multiple connecting leaders, the "tip-side" connecting mode

    Fig. 5  Parameter statistics of upward leaders in cloud-to-ground lightning simulation

    Table  1  Comparison of observations and model output

    对比数据 UUL起始高度/m UUL长度/m 距连接点水平距离/m 距下行先导最近分支距离/m
    二维观测数据 40~503 0.48~399 20~1300 99~578
    三维观测数据 0.53~678.3 22~2210 108.9~982.6
    三维模式结果 360~600 12~709 255~1026 326~589
    DownLoad: Download CSV
  • [1]
    郄秀书, 张其林, 袁铁, 等.雷电物理学.北京:科学出版社, 2013.
    [2]
    Vladimir A R, Martin A U.Lightning Physics and Effects.Cambridge:Cambridge University Press, 2003:137-143.
    [3]
    McEachron K B.Lightning to the empire state building.Electr Eng, 1938, 57(12):493-505. doi:  10.1109/EE.1938.6431034
    [4]
    Golde R H.Lightning.San Diego:Academic, 1977.
    [5]
    Idone V P.Length bounds for connecting discharges in triggered lightning subsequent strokes.J Geophys Res, 1990, 95(D12):20409-20416. doi:  10.1029/JD095iD12p20409
    [6]
    Krider E P, Ladd C G.Upward streamers in lightning discharges to mountainous terrain.Weather, 1975, 30(3):77-81. doi:  10.1002/j.1477-8696.1975.tb05282.x
    [7]
    Cummins K L, Krider E P, Olbinski M.A case study of lightning attachment to flat ground showing multiple unconnected upward leaders.Atmos Res, 2018, 202:169-174. doi:  10.1016/j.atmosres.2017.11.007
    [8]
    齐奇, 吕伟涛, 武斌, 等.广州两座高建筑物上闪击距离的二维光学观测.应用气象学报, 2020, 31(2):156-164. doi:  10.11898/1001-7313.20200203
    [9]
    Warner T A.Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders//201030th Int Conf on Lightning Protection (ICLP).IEEE, 2010:1-4. http://ieeexplore.ieee.org/document/7845809/
    [10]
    Araujo L S, Miguel B G, Pedrosa A G.Assessing Events of Upward Lightning Measured at Morro do Cachimbo Station.Conf on Lightning Protection.IEEE, 2012.
    [11]
    Wang D, Takagi N, Watanabe T.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.Geophys Res Lett, 2008, 35(2), L02803. doi:  10.1029/2007GL032136
    [12]
    Lu W, Chen L, Zhang Y.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou.J Geophys Res, 2012, 117(D19), D19211. http://www.jstage.jst.go.jp/A_PRedirectJournalInit?sryCd=ieejpes&noVol=132&noIssue=6&kijiCd=132_568&screenID=AF06S010
    [13]
    Gao Y, Lu W, Ma Y.Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou.Atmos Res, 2014, 149:193-203. doi:  10.1016/j.atmosres.2014.06.008
    [14]
    吴姗姗, 吕伟涛, 齐奇.基于光学资料的广州塔附近下行地闪特征.应用气象学报, 2019, 30(2):203-210. doi:  10.11898/1001-7313.20190207
    [15]
    廖义慧, 吕伟涛, 齐奇, 等.基于闪电先导随机模式对不同连接形态的模拟.应用气象学报, 2016, 27(3):361-369. doi:  10.11898/1001-7313.20160311
    [16]
    谭涌波, 张鑫, 向春燕, 等.建筑物上侧击雷电的三维数值模拟.应用气象学报, 2017, 28(2):227-236. doi:  10.11898/1001-7313.20170210
    [17]
    谭涌波, 陈之禄, 张冬冬.高建筑对周围建筑雷想击保护距离的模拟.应用气象学报, 2016, 27(4):498-505. doi:  10.11898/1001-7313.20160413
    [18]
    Tan Y B, Tao S C, Zhu B Y.Fine-resolution of the channel structures and propagation features of intracloud lightning.Geoghys Res Lett, 2006, 33:L0980. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a6b50150aed1833c98301daf7f2e3a0
    [19]
    吴姗姗.广州塔及其附近下行地闪的特征分析和模拟.北京:中国气象科学研究院, 2019.
    [20]
    任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. http://qikan.camscma.cn/article/id/20110208
    [21]
    Arevalo L, Cooray V.Influence of Multiple Upward Connecting Leaders Initiated from the Same Structure on the Lightning Attachment Process.X International Symposium on Lightning Protection, 2009.
    [22]
    Rakov V A, Uman M A.Lightning:Physics and Effects.Cambridge:Cambridge University Press, 2003.
    [23]
    Mazur V, Ruhnke L H, Lalande P.Computer simulation of a downward negative stepped leader and its interaction with a ground structure.J Geophys Res, 2000, 105(D17):22361-22369. doi:  10.1029/2000JD900278
    [24]
    Becerra M, Cooray V.A simplified physical model to determine the lightning upward connecting leader inception.IEEE Trans Power Delivery, 2006, 21(2):897-908. doi:  10.1109/TPWRD.2005.859290
    [25]
    Becerra M, Cooray V.On the velocity of positive connecting leaders associated with negative downward lightning leaders.Geoghys Res Lett, 2008, 35(2), L02801. doi:  10.1029/2007GL032506
    [26]
    Ait-Amar S, Berger G.Lightning Interception on Elevated Building//Proc of 5th WSEAS Int Conf on Power Systems & EMC.2005: 17-23.
    [27]
    Tran M D, Rakov V A.A study of the ground-attachment process in natural lightning with emphasis on its breakthrough phase.Sci Rep, 2017, 7(1):1-13. http://europepmc.org/abstract/MED/29150613
    [28]
    王艺儒, 谭涌波, 郑天雪, 等.利于上行负地闪始发的电荷区参数数值模拟.应用气象学报, 2020, 31(2):175-184. doi:  10.11898/1001-7313.20200205
    [29]
    Lu W, Qi Q, Ma Y.Two basic leader connection scenarios observed in negative lightning attachment process.High Voltage, 2016, 1(1):11-17. doi:  10.1049/hve.2016.0002
    [30]
    何沧平.OpenACC并行编程实践.北京:机械工业出版社, 2017.
    [31]
    吕伟涛, 陈绿文, 马颖, 等.广州高建筑物雷电观测与研究10年进展.应用气象学报, 2020, 31(2):129-145. doi:  10.11898/1001-7313.20200201
    [32]
    郭秀峰, 谭涌波, 郭凤霞.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报, 2013, 24(2):189-196. http://qikan.camscma.cn/article/id/20130207
    [33]
    Lu W, Gao Y, Chen L.Three-dimensional propagation characteristics of the leaders in the attachment process of a downward negative lightning flash.Atmos Sol-Terr Phys, 2015, 136:23-30. doi:  10.1016/j.jastp.2015.07.011
    [34]
    谭涌波, 陈超, 周洁晨, 等.积云模式中上行地闪的参数化方案及起始有利云内环境特征的探讨.中国科学(地球科学), 2016, 46(7):986-999. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201607010
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (1122) PDF downloads(54) Cited by()
    • Received : 2020-05-12
    • Accepted : 2020-07-06
    • Published : 2020-10-27

    /

    DownLoad:  Full-Size Img  PowerPoint