Sun Jian, Cao Zhuo, Li Heng, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. DOI: 10.11898/1001-7313.20210101.
Citation: Sun Jian, Cao Zhuo, Li Heng, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. DOI: 10.11898/1001-7313.20210101.

Application of Artificial Intelligence Technology to Numerical Weather Prediction

More Information
  • Numerical weather prediction technology plays an increasingly important role in improving accuracy and service level of modern weather forecast. With the development of observation system and higher resolution and complexity of the numerical weather prediction model, the products of numerical weather forecast have been greatly improved in quantity and quality, and can offer rich information at high spatial-temporal frequency. However, such a large amount of prediction data are not fully explored. Artificial intelligence has achieved great success in many fields, such as pattern recognition and natural language processing, which provides an opportunity for further improving numerical weather prediction. It's also employed in initialization, numerical model and production of weather forecast service, involving observation system, data assimilation, model integration, ensemble forecast and high-performance computing methods. Both the accuracy of forecast results and computational efficiency have been improved by using error correction, parameter estimation, local surrogate model and so on. In addition, some end-to-end neural network models also show the potential of pure data-driven weather forecast. These models use spatial-temporal observation data as input and directly output the prediction results in terms of deterministic results or probabilities. Some of them perform well in short-term severe convective weather, precipitation, and long-term climate forecast. Existing works employ various artificial intelligence technology methods, mainly including large-scale calculation of neural network, feature analysis, interpretability, and customized loss function. However, there are still some challenges, the potential of artificial intelligence needs to be further explored. Some issues should be carefully considered, including weak interpretability, uncertainty analysis and the coupling with conventional numerical models, and how to use physical knowledge to guide the design of artificial intelligence model is also worth addressing. To deal with these challenges, some promising suggestions are proposed. Bayesian network and causal network will help to establish more comprehensive and profound feature engineering. Using Bayesian inference to generate distribution characteristics of current meteorological states may be an alternative to efficient and effective uncertainty quantification. The development of some standard workflow and framework will contribute to the coupling of conventional numerical model and artificial intelligence module. Successful artificial intelligence applications in weather forecast require deep cooperation between meteorological experts and computer experts who focus on artificial intelligence and high-performance computing.
  • Fig  1.   Workflow of numerical weather prediction

    Fig  2.   Components of artificial intelligence technology

    Fig  3.   Weather prediction workflow based on artificial intelligence models

    Table  1   Artificial intelligence applications to numerical weather prediction

    功能 模块 人工智能技术 目标 效果
    初值生成 观测资料处理及质量控制 贝叶斯方案、全卷积网络、极限学习机等 观测偏差纠正[43]、雷达及卫星图像资料预处理[44-45] 提高观测资料质量,优化高分辨率图像资料分割、资料填补等
    资料同化 随机森林、深度神经网络、支持向量机等 同化算法参数优化[46]、部分替代资料同化方法[47]、聚焦观测区域[48] 提高同化质量,提高同化速度,更好利用高分辨率资料等
    预报 模式积分 深度神经网络、卷积网络、随机森林等 模式代理[49]、替代物理过程参数化方案[50-53]、参数校正[54-55] 提高模式计算速度,优化次网格物理过程的表示,提高参数校正效果与速度等
    产品应用 后处理 随机森林、深度神经网络、卷积神经网络等 确定性及集合预报结果后处理[56-58]、替代集合预报[59-60] 后处理偏差订正、质量更好、效率更高等
    DownLoad: CSV
  • [1]
    段海来, 千怀遂.广州市城市电力消费对气候变化的响应.应用气象学报, 2009, 20(1): 80-87. DOI: 10.3969/j.issn.1001-7313.2009.01.010

    Duan Hailai, Qian Huaisui.Responses of the electric power consumption to climate change in Guangzhou City.J Appl Meteor Sci, 2009, 20(1): 80-87. DOI: 10.3969/j.issn.1001-7313.2009.01.010
    [2]
    郭建平.农业气象灾害监测预测技术研究进展.应用气象学报, 2016, 27(5): 620-630. DOI: 10.11898/1001-7313.20160510

    Guo Jianping.Research progress on agricultural meteorological disaster monitoring and forecasting.J Appl Meteor Sci, 2016, 27(5): 620-630. DOI: 10.11898/1001-7313.20160510
    [3]
    王纯枝, 霍治国, 张蕾, 等.北方地区小麦蚜虫气象适宜度预报模型构建.应用气象学报, 2020, 31(3): 280-289. DOI: 10.11898/1001-7313.20200303

    Wang Chunzhi, Huo Zhiguo, Zhang Lei, et al.Construction of forecasting model of meteorological suitability for wheat aphids in the Northern China.J Appl Meteor Sci, 2020, 31(3): 280-289. DOI: 10.11898/1001-7313.20200303
    [4]
    周雨, 刘志萍, 张国平.鹰厦铁路降水诱发地质灾害概率预报模型及应用.应用气象学报, 2015, 26(6): 743-749. DOI: 10.11898/1001-7313.20150611

    Zhou Yu, Liu Zhiping, Zhang Guoping.Probability forecasting model of geological disaster along the Yingxia Railway induced by precipitation with its application.J Appl Meteor Sci, 2015, 26(6): 743-749. DOI: 10.11898/1001-7313.20150611
    [5]
    侯英雨, 张蕾, 吴门新, 等.国家级现代农业气象业务技术进展.应用气象学报, 2018, 29(6): 641-656. DOI: 10.11898/1001-7313.20180601

    Hou Yingyu, Zhang Lei, Wu Menxin, et al.Advances of modern agrometeorological service and technology in China.J Appl Meteor Sci, 2018, 29(6): 641-656. DOI: 10.11898/1001-7313.20180601
    [6]
    高太长, 刘磊, 赵世军, 等.全天空测云技术现状及进展.应用气象学报, 2010, 21(1): 101-109. DOI: 10.3969/j.issn.1001-7313.2010.01.014

    Gao Taichang, Liu Lei, Zhao Shijun, et al.The actuality and progress of whole sky cloud sounding techniques.J Appl Meteor Sci, 2010, 21(1): 101-109. DOI: 10.3969/j.issn.1001-7313.2010.01.014
    [7]
    Zhai Panmao, Liu Jing.Extreme weather/climate events and disaster prevention and mitigation under global warming background.Engineering Sciences, 2012, 14(9): 55-63.
    [8]
    穆穆, 陈博宇, 周菲凡, 等.气象预报的方法与不确定性.气象, 2011, 37(1): 1-13.

    Mu Mu, Chen Boyu, Zhou Feifan, et al.Methods and uncertainties of meteorological forecast.Meteorological Monthly, 2011, 37(1): 1-13.
    [9]
    曾晓梅.国外人工智能技术在天气预报中的应用综述.气象科技, 1999, 27(1): 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ901.001.htm

    Zeng Xiaomei.Application of artificial intelligence technology in weather forecast abroad.Meteorological Science and Technology, 1999, 27(1): 4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ901.001.htm
    [10]
    Cleveland A.The physical basis of long-range weather forecasts.Mon Wea Rev, 1901, 29(12): 551.
    [11]
    Bjerknes V.Das Problem der Wettervorhersage betrachtet vomStandpunkt der Mechanik und Physik.Meteorol Z, 1904, 21: 1-7.
    [12]
    Richardson L F.Weather Prediction by Numerical Process.Cambridge:Cambridge University Press, 1922.
    [13]
    Charney J G, Fjoertoft R, Von Neumann J.Numerical integration of the barotropic vorticity equation.Tellus, 1950, 2: 237-254.
    [14]
    Lynch P.The origins of computer weather prediction and climate modeling.J Comput Phys, 2008, 227: 3431-3444. DOI: 10.1016/j.jcp.2007.02.034
    [15]
    李泽椿, 陈德辉.国家气象中心集合数值预报业务系统的发展及应用.应用气象学报, 2002, 13(1): 1-15. DOI: 10.3969/j.issn.1001-7313.2002.01.001

    Li Zechun, Chen Dehui.The development and application of the operational ensemble prediction system at National Meteorological Center.J Appl Meteor Sci, 2002, 13(1): 1-15. DOI: 10.3969/j.issn.1001-7313.2002.01.001
    [16]
    沈学顺, 苏勇, 胡江林, 等.GRAPES_GFS全球中期预报系统的研发和业务化.应用气象学报, 2017, 28(1): 1-10. DOI: 10.11898/1001-7313.20170101

    Shen Xueshun, Su Yong, Hu Jianglin, et al.Development and operation transformation of GRAPES global middle-range forecast system.J Appl Meteor Sci, 2017, 28(1): 1-10. DOI: 10.11898/1001-7313.20170101
    [17]
    贺雅楠, 高嵩, 薛峰, 等.基于MICAPS4的智能网格预报平台设计与实现.应用气象学报, 2018, 29(1): 13-24. DOI: 10.11898/1001-7313.20180102

    He Yanan, Gao Song, Xue Feng, et al.Design and implementation of intelligent grid forecasting platform based on MICAPS4.J Appl Meteor Sci, 2018, 29(1): 13-24. DOI: 10.11898/1001-7313.20180102
    [18]
    李泽椿, 毕宝贵, 金荣花, 等.近10年中国现代天气预报的发展与应用.气象学报, 2014, 72(6): 1069-1078. DOI: 10.3969/j.issn.1004-4965.2014.06.007

    Li Zechun, Bi Baogui, Jin Ronghua, et al.The development and application of the modern weather forecast in China for the recent 10 years.Acta Meteorologica Sinica, 2014, 72(6): 1069-1078. DOI: 10.3969/j.issn.1004-4965.2014.06.007
    [19]
    Bauer P, Thorpe A, Brunet G.The quiet revolution of numerical weather prediction.Nature, 2015, 525(7567): 47-55. DOI: 10.1038/nature14956
    [20]
    Goodfellow I, Bengio Y, Courville A.Deep Learning.Cambridge:MIT Press, 2016.
    [21]
    Jain A K.Data clustering: 50 years beyond k-means.Pattern Recognition Letters, 2009, 31(8): 651-666.
    [22]
    Yang J, Zhang D, Frangi A F, et al.Two-dimensional PCA:A new approach to appearance-based face representation and recognition.IEEE Transactions on Pattem Analysis and Machine Intelligence, 2004, 26(1): 131-137. DOI: 10.1109/TPAMI.2004.1261097
    [23]
    周志华.机器学习.北京:清华大学出版社, 2016.

    Zhou Zhihua.Machine Learning.Beijing:Tsinghua University Press, 2016.
    [24]
    Hadji I, Wildes R P.What Do We Understand About Convolutional Networks?Preprint at https://arxiv.org/abs/1803.08834,2018:1-94.
    [25]
    Graves A.Supervised sequence labelling with recurrent neural networks.Studies in Computational Intelligence, 2012, 385: 1-131.
    [26]
    Goodfellow I, Pouget-Abadie J, Mirza M, et al.Generative Adversarial Nets//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680.
    [27]
    Qin Z, Yu F, Liu C, et al.How convolutional neural networks see the world-A survey of convolutional neural network visualization methods.Mathematical Foundations of Computing, 2018, 1(2): 149-180. DOI: 10.3934/mfc.2018008
    [28]
    Pearl J, Mackenzie D.The Book of Why.London:Allen Lane, 2019.
    [29]
    Yosinski J, Clune J, Bengio Y, et al.How Transferable are Features in Deep Neural Networks?//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 3320-3328.
    [30]
    Akhtar N M A.Threat of adversarial attacks on deep learning in computer vision:A Survey.IEEE Access, 2018, 6: 14410-14430. DOI: 10.1109/ACCESS.2018.2807385
    [31]
    Feurer M, Klein A, Eggensperger K, et al.Efficient and robust automated machine learning.Advances in Neural Information Processing Systems, 2016, 28: 2944-2952.
    [32]
    Jin H, Song Q, Hu X.Auto-Keras: An Efficient Neural Architecture Search System//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1946-1956.
    [33]
    Francois-Lavet V, Henderson P, Islam R, et al.An introduction to deep reinforcement learning.Foundations and Trends in Machine Learning, 2018, 11(3-4), DOI: 10.1561/2200000071.
    [34]
    Pedregosa F, Varoquaux G, Gramfort A, et al.Scikit-learn:Machine Learning in Python.Journal of Machine Learning Research, 2011, 12: 2825-2830.
    [35]
    Chollet F.Keras(2020-04-28)[2020-06-20].https://keras.io,2020.
    [36]
    Abadi M, Barham P, Chen Jianmin, et al.TensorFlow: A System for Large-scale Machine Learning//Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, 2016: 265-283.
    [37]
    Paszke A, Gross S, Chintala S, et al.Automatic Differentiation in PyTorch//31st Conference on Neural Information Processing Systems, 2017: 1-4.
    [38]
    Yin S, Ouyang P, Tang S, et al.A high energy efficient reconfigurable hybrid neural network processor for deep learning applications.IEEE Journal of Solid-State Circuits, 2018, 53(4): 968-982. DOI: 10.1109/JSSC.2017.2778281
    [39]
    Vazhkudai S, Supinski B R, Bland A S.The Design, Deployment, and Evaluation of the CORAL Pre-exascale Systems//The InternationalConference for High Performance Computing, Networking, Storage, and Analysis, 2018: 661-672.
    [40]
    Reichstein M, Camps-Valls G, Stevens B, et al.Deep learning and process understanding for data-driven earth system science.Nature, 2019, 566(7743): 195-204. DOI: 10.1038/s41586-019-0912-1
    [41]
    Karpatne A, Watkins W, Read J, at al.Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling.Preprint at https://arxiv.org/abs/1710.11431v2,2017:1-11.
    [42]
    Karpatne A, Atluri G, Faghmous J, et al.Theory-guided data science:A new paradigm for scientific discovery from data.IEEE Transactions on Knowledge & Data Engineering, 2017, 29(10): 2318-2331.
    [43]
    Berry T, Harlim J.Correcting biased observation model error in data assimilation.Mon Wea Re, 2017, 145(7): 2833-2853. DOI: 10.1175/MWR-D-16-0428.1
    [44]
    安捷, 马尽文.基于全卷积网络的遥感图像自动云检测.信号处理, 2019, 35(4): 556-562.

    An Jie, Ma Jinwen.Automatic cloud segmentation based on the fully convolutional neural networks.Journal of Signal Processing, 2019, 35(4): 556-562.
    [45]
    Chang Nibin, Bai Kaixu, Chen Chifarn.Smart information reconstruction via time-space-spectrum continuum for cloud removal in satellite images.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5): 1898-1912. DOI: 10.1109/JSTARS.2015.2400636
    [46]
    Moosavi A, Attia A, Sandu A.A Machine Learning Approach to Adaptive Covariance Localization.Preprint at https://arxiv.org/abs/1801.00548,2018:1-24.
    [47]
    Cintra R, de Campos Velho H, Cocke S.Tracking the Model: Data Assimilation by Artificial Neural Network//2016 International Joint Conference on Neural Networks(IJCNN), 2016: 403-410.
    [48]
    Lee Y J, Hall D, Stewart J, et al.Machine learning for targeted assimilation of satellite data.Machine Learning and Knowledge Discovery in Databases, 2018, 11053: 53-68.
    [49]
    Scher S.Toward data-driven weather and climate forecasting approximating a simple general circulation model with deep learning.Geophys Res Lett, 2018, 45(22): 12616-12622. DOI: 10.1029/2018GL080704
    [50]
    Brenowitz N D, Bretherton C S.Prognostic validation of a neural network unified physics parameterization.Geophys Res Lett, 2018, 45: 6289-6298. DOI: 10.1029/2018GL078510
    [51]
    Pan B, Hsu K, AghaKouchak A, et al.Improving precipitation estimation using convolutional neural network.Water Resources Research, 2019, 55(3): 2301-2321. DOI: 10.1029/2018WR024090
    [52]
    O'Gorman P A, Dwyer J G.Using machine learning to parameterize moist convection:Potential for modeling of climate, climate change, and extreme events.Journal of Advances in Modeling Earth Systems, 2018, 10(10): 2548-2563. DOI: 10.1029/2018MS001351
    [53]
    Rasp S, Pritchard M S, Gentine P.Deep learning to represent subgrid processes in climate models.Proceedings of the National Academy of Sciences, 2018, 115(39): 9684-9689. DOI: 10.1073/pnas.1810286115
    [54]
    Xu H, Zhang T, Luo Y, et al.Parameter calibration in global soil carbon models using surrogate-based optimization.Geoscientific Model Development, 2018, 11(7): 3027-3044. DOI: 10.5194/gmd-11-3027-2018
    [55]
    Wu L, Zhang T, Qin Y, et al.An effective parameter optimization with radiation balance constraint in CAM5.Geophys Res Lett, 2020, 13: 41-53.
    [56]
    Burke A.Calibration of machine learning-based probabilistic hail predictions for operational forecasting.Bull Amer Meteor Soc, 2020, 35: 149-168.
    [57]
    Taillardat M.Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics.Mon Wea Rev, 2016, 144(6): 2375-2393. DOI: 10.1175/MWR-D-15-0260.1
    [58]
    Rasp S, Lerch S.Neural networks for postprocessing ensemble weather forecasts.Mon Wea Rev, 2018, 146(11): 3885-3900. DOI: 10.1175/MWR-D-18-0187.1
    [59]
    Scher S, Messori G.Predicting weather forecast uncertainty with machine learning.Quart J Roy Meteor Soc, 2018, 144(717): 2830-2841. DOI: 10.1002/qj.3410
    [60]
    Sonderby C K, Espeholt L, Heek J, et al.MetNet: A Neural Weather Model for Precipitation Forecasting.Preprint at https://arxiv.org/abs/2003.12140,2020:1-17.
    [61]
    Ham Y G, Kim J H, Luo J J.Deep learning for multi-year ENSO forecasts.Nature, 2019, 573(7775): 568-572. DOI: 10.1038/s41586-019-1559-7
    [62]
    Zhou K, Zheng Y, Li B, et al.Forecasting different types of convective weather:a deep learning approach.J Meteor Res, 2019, 33(5): 797-809. DOI: 10.1007/s13351-019-8162-6
    [63]
    Kurth T, Treichler S, Romero J, et al.Exascale Deep Learning for Climate Analytics//Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, 2018: 1-12.
    [64]
    Rojek K.Machine learning method for energy reduction by utillzing dynamic mixed precision on GPU-based supercomputers.Concurrency and Computation:Practice and Experience, 2019, 31(6):e4644.1-e4644.12.
    [65]
    Manandhar S, Dev S, Lee Y H, et al.A data-driven approach for accurate rainfall prediction.IEEE Trans Geosci Remote Sens, 2019, 57(11): 9323-9331. DOI: 10.1109/TGRS.2019.2926110
    [66]
    Gagne D, Haupt S, Nychka D, et al.Interpretable deep learning for spatial analysis of severe hailstorms.Mon Wea Rev, 2019, 147(8): 2827-2845. DOI: 10.1175/MWR-D-18-0316.1
    [67]
    Karevan Z, Suykens J.Transductive LSTM for time-series prediction:An application to weather forecasting.Neural Networks, 2020, 125: 1-9. DOI: 10.1016/j.neunet.2019.12.030
    [68]
    Qiu M, Zhao P, Zhang K, et al.A Short-term Rainfall Prediction Model Using Multi-task Convolutional Neural Networks//2017 IEEE International Conference on Data Mining, 2017: 395-404.
    [69]
    Yuan M, Ji X, Lu T, et al.A Novel Two-Factor Attention Encoder-Decoder Network through Combining Temporal and Prior Knowledge for Weather Forecasting//2019 International Joint Conference on Neural Networks, 2019: 1-8.
    [70]
    Prasetya E P, Djamal E C.Rainfall Forecasting for the Natural Disasters Preparation Using Recurrent Neural Networks//2019 International Conference on Electrical Engineering and Informatics, 2019: 52-57.
    [71]
    Tan C, Feng X, Long J, et al.FORECAST-CLSTM: A New Convolutional LSTM Network for Cloudage Nowcasting//2018 IEEE Visual Communications and Image Processing, 2018: 1-4.
  • Related Articles

    [1]Zhao Linna, Lu Shu, Qi Dan, Xu Dongbei, Ying Shuang. Daily Maximum Air Temperature Forecast Based on Fully Connected Neural Network[J]. Journal of Applied Meteorological Science, 2022, 33(3): 257-269. DOI: 10.11898/1001-7313.20220301
    [2]Han Feng, Long Mingsheng, Li Yuean, Xue Feng, Wang Jianmin. The Application of Recurrent Neural Network to Nowcasting[J]. Journal of Applied Meteorological Science, 2019, 30(1): 61-69. DOI: 10.11898/1001-7313.20190106
    [3]Zhang Zhenhua, Miao Chunsheng, Zeng Zhihua, Shi Chunxiang. Improvement and Application of Artificial Neural Networks to Cloud Classification[J]. Journal of Applied Meteorological Science, 2012, 23(3): 355-363.
    [4]Wang Yanlei, Cao Bingwei, Huang Bing, Dong Zhaojun, Lu Zeting, Chen Xingming. Fog Forecast Experiment of Single Station Based on LVQ Neural Network[J]. Journal of Applied Meteorological Science, 2010, 21(1): 110-114.
    [5]Huang Xiaogang, Fei Jianfang, Chen Peiyan. A Neural Network Approach to Predict Tropical Cyclone Intensity[J]. Journal of Applied Meteorological Science, 2009, 20(6): 699-705.
    [6]Liang Yitong, Hu Jianglin. A DISCUSSION ON APPLICATION OF NEURAL NETWORK TECHNIQUE IN IDENTIFICATION OF WATER BODY FROM NOAA SATELLITE IMAGES[J]. Journal of Applied Meteorological Science, 2001, 12(1): 85-90.
    [7]Shi Chunxiang, Wu Rongzhang, Xiang Xukang. AUTOMATIC SEGMENTATION OF SATELLITE IMAGE USING HIERARCHICAL THRESHOLD AND NEURAL NETWORK[J]. Journal of Applied Meteorological Science, 2001, 12(1): 70-78.
    [8]Zhang Ren, Jiang Guorong, Yu Zhihao, Jiang Quanrong. ESTABLISHMENT OF PREDICTION MODEL FOR THE PACIFIC SUBTROPICAL HIGH USING NEURAL NETWORK CALCULATION METHOD[J]. Journal of Applied Meteorological Science, 2000, 11(4): 474-483.
    [9]Bai Huiqing, Fang Zongyi, Wu Rongzhang, Zheng Junli. Identification About Four Kinds of Cloud Systems in GMS Images Based on Neural Network[J]. Journal of Applied Meteorological Science, 1998, 9(4): 402-409.
    [10]Wang Lie, Cai Yudong, Yao Linshen. The Recognition and Estimation of the Advantages of Artificial Precipitation Enhancement by Neural Network[J]. Journal of Applied Meteorological Science, 1994, 5(1): 125-128.
  • Cited by

    Periodical cited type(54)

    1. 王彬,胡江凯,崔应杰,周斌,孙婧,赵春燕,娄盼星. CMA数值预报模式在线交互式试验管理系统. 应用气象学报. 2025(01): 110-120 . 本站查看
    2. 张芳,王刚,张朝飞,潘泉,陈锋. 基于支持向量机的发射场80m高度风速预报订正模型. 载人航天. 2025(01): 11-17 .
    3. 王嫄,霍鹏,韩毅,陈暾,汪祥,温辉. 基于深度学习的气象预报模型研究综述. 计算机科学. 2025(03): 112-126 .
    4. 朱文刚,盛春岩,范苏丹,荣艳敏,曲美慧. 基于前馈神经网络的多模式集成降水预报研究. 干旱气象. 2024(01): 117-128 .
    5. 仲夏. 可解释人工智能在气象预报中的应用和展望. 软件. 2024(01): 50-52 .
    6. 田莹,姚秀萍. 华南切变线研究的现状与展望. 气象. 2024(03): 275-290 .
    7. 刘丽景. 基于遥感卫星的极端气象观测数据安全预警系统设计. 计算机测量与控制. 2024(05): 193-200 .
    8. 殷启元,林蟒,杨思鹏,朱怡颖,方俏娴,杜晖,周方聪. 基于机器学习的目标点雷电安全风险预警方法研究. 热带气象学报. 2024(02): 217-225 .
    9. 董瑶海. 从单星观测到体系协同:风云卫星智慧协同观测体系的技术特征与发展展望. 上海航天(中英文). 2024(03): 37-46 .
    10. Jiang HUANGFU,Zhiqun HU,Jiafeng ZHENG,Lirong WANG,Yongjie ZHU. Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning. Advances in Atmospheric Sciences. 2024(06): 1147-1160 .
    11. 夏侯杰,肖安. 基于SHAP值机器学习的江西暖季暴雨预报因子重要性分析. 气象与减灾研究. 2024(01): 12-23 .
    12. 杨彬,马廷淮,黄学坚. 基于注意力机制与自适应时序分解的气温预报模型. 气象. 2024(06): 723-732 .
    13. 赵志强,荆国栋,李德泉. 人工智能时代国省一体化人工影响天气综合业务平台建设. 中阿科技论坛(中英文). 2024(07): 30-34 .
    14. 王友宁,白金明,刘琦. 基于RC-LSTM的雷达回波外推方法. 计算机集成制造系统. 2024(08): 2962-2967 .
    15. 范宇恩,宋智,杨雪,刘寰. 基于BP神经网络拟合四川南部山区焚风过程气温变化的方法. 高原山地气象研究. 2024(03): 95-101 .
    16. 范娇,曾小团,黄荣成,黄增俊. 深度学习在降水预报中的研究和应用进展. 气象研究与应用. 2024(03): 1-11 .
    17. 沈天行,秦华旺. 基于改进沙猫群优化算法优化CatBoost模型的气温和风速偏差订正. 科学技术与工程. 2024(34): 14716-14725 .
    18. 郑晓亮,杨晓亮,来文豪. 新能源发电预测方法分类及研究进展. 科学技术与工程. 2024(34): 14503-14521 .
    19. 杨凡,刘志丰,任兆鹏,崔天伦,于洋. 基于深度学习的大风订正预报研究. 海洋预报. 2024(06): 23-31 .
    20. 赵华生,黄小燕. 基于XGBoost的温度订正预报方法研究. 热带气象学报. 2024(05): 767-775 .
    21. 樊仲欣,王妍,王若曈. 基于神经网络模型可解释性的降水预报. 热带气象学报. 2024(06): 1030-1044 .
    22. 张志坚,伍光胜,黎洁仪,陈雨欣,张静,孙伟忠. 一种基于深度学习的城市道路积水内涝图像识别方法. 热带气象学报. 2024(06): 918-930 .
    23. 李海燕,颉卫华,吴统文,李巧萍,梁萧云,姚隽琛,刘向文,路屹雄,杨涛,柳春. 天山北坡次季节-季节尺度降水集合预测. 应用气象学报. 2023(01): 39-51 . 本站查看
    24. 马雷鸣,林红,储海,尹春光,张军平,陈磊,王海宾,徐康,范旭亮. 上海强对流智能预报业务新技术研究进展. 地球科学进展. 2023(02): 111-124 .
    25. 陈良吕,夏宇. 对流尺度集合预报成员数对降水预报的影响. 应用气象学报. 2023(02): 142-153 . 本站查看
    26. 张春桂. 福建省空气负氧离子分布特征及气象预测模型. 应用气象学报. 2023(02): 193-205 . 本站查看
    27. 戴千斌,黄南天. 短期风电功率预测误差修正研究综述. 东北电力大学学报. 2023(02): 1-7 .
    28. 董润婷,吴利,王晓英,曹腾飞,黄建强,管琴,吴洁瑕. 深度学习在天气预报领域的应用分析及研究进展综述. 计算机应用. 2023(06): 1958-1968 .
    29. 胡莹莹,庞林,王启光. 基于深度学习的7~15 d温度格点预报偏差订正. 应用气象学报. 2023(04): 426-437 . 本站查看
    30. 栗晗,王新敏,吕林宜,马蕴琦. 黄淮地区副高边缘型降水数值预报精细化检验. 应用气象学报. 2023(04): 413-425 . 本站查看
    31. 张进,孙健,沈学顺,苏勇,马占山,井浩,刘奇俊,张红亮,蒋沁谷,陈峰峰,李喆,金之雁,伍湘君,梁妙玲,刘琨. CMA-GFS V4.0模式关键技术研发和业务化. 应用气象学报. 2023(05): 513-526 . 本站查看
    32. 王蕾,陈起英,胡江林,徐国强. 基于CMA-MESO冰粒子含量的雨雪相态判据应用. 应用气象学报. 2023(06): 655-667 . 本站查看
    33. 邢楠,仲跻芹,雷蕾,杨艺亚,徐路扬. 基于CMA-BJ的北京地区短时强降水预报试验. 应用气象学报. 2023(06): 641-654 . 本站查看
    34. 王毅,刘爽,代刊,李嘉睿,许万智,郝伊一. 无缝隙地球系统理念下世界气象中心发展趋势浅析. 气象科技进展. 2023(05): 28-32+44 .
    35. 刘嘉慧敏,潘留杰,戴昌明,胡启元,何林,燕若彤. 我国气温网格预报检验及客观订正方法研究进展. 气象科技进展. 2023(06): 10-20 .
    36. 米前川,高西宁,李玥,李馨仪,唐莹,任传友. 深度学习方法在干旱预测中的应用. 应用气象学报. 2022(01): 104-114 . 本站查看
    37. 张延彪,陈明轩,韩雷,宋林烨,杨璐. 数值天气预报多要素深度学习融合订正方法. 气象学报. 2022(01): 153-167 .
    38. 杨何群,王晓峰,高彦青,陆一闻,麻炳欣,王昕瑶. 数值天气预报对卫星大数据的需求分析. 大数据. 2022(02): 89-102 .
    39. 郭其乐,李军玲,郭鹏. 基于作物双时相遥感特征的花生种植区提取. 应用气象学报. 2022(02): 218-230 . 本站查看
    40. 赵琳娜,卢姝,齐丹,许东蓓,应爽. 基于全连接神经网络方法的日最高气温预报. 应用气象学报. 2022(03): 257-269 . 本站查看
    41. 王玉虹,Bica Benedikt. 不同天气背景下京津冀降水临近外推预报. 应用气象学报. 2022(03): 270-281 . 本站查看
    42. Hongwei Yang,Jie Yan,Yongqian Liu,Zongpeng Song. Statistical downscaling of numerical weather prediction based on convolutional neural networks. Global Energy Interconnection. 2022(02): 217-225 .
    43. 韩念霏,杨璐,陈明轩,宋林烨,曹伟华,韩雷. 京津冀站点风温湿要素的机器学习订正方法. 应用气象学报. 2022(04): 489-500 . 本站查看
    44. 曹伟华 ,南刚强 ,陈明轩 ,程丛兰 ,杨璐 ,吴剑坤 ,宋林烨 ,刘瑞婷 . 基于深度学习的京津冀地区精细尺度降水临近预报研究. 气象学报. 2022(04): 546-564 .
    45. 尹晓燕,胡志群,郑佳锋,左园园,皇甫江,朱永杰. 利用深度学习填补双偏振雷达回波遮挡. 应用气象学报. 2022(05): 581-593 . 本站查看
    46. 郑倩,高猛. 西北太平洋热带气旋生成客观预测模型. 应用气象学报. 2022(05): 594-603 . 本站查看
    47. 杨绚,代刊,朱跃建. 深度学习技术在智能网格天气预报中的应用进展与挑战. 气象学报. 2022(05): 649-667 .
    48. 王继业. 人工智能赋能源网荷储协同互动的应用及展望. 中国电机工程学报. 2022(21): 7667-7682 .
    49. 花凡,李莉,蔡鑫楠,徐健. 长短期记忆网络在气温预测中的应用. 智能计算机与应用. 2022(11): 92-95+102 .
    50. 陈以祺,吴香华,刘鹏,刘端阳. 降水统计预报模型的模拟性能分析. 气候与环境研究. 2022(05): 578-590 .
    51. 刘志杰,刘彬贤,王锐,史得道. 基于传统和深度学习技术的黄渤海域大风预报方法研究. 海洋预报. 2022(06): 34-43 .
    52. 薛建军,贾朋群,肖子牛. 集合、同化思想在大气科学中的渗透. 气象科技进展. 2022(06): 64-72 .
    53. 徐成鹏,曹勇,张恒德,刘海知,梅双丽. U-Net模型在京津冀临近降水预报中的应用和检验评估. 气象科学. 2022(06): 781-792 .
    54. 刘娜,熊安元,张强,刘雨佳,战云健,刘一鸣. 强对流天气人工智能应用训练基础数据集构建. 应用气象学报. 2021(05): 530-541 . 本站查看

    Other cited types(18)

Catalog

    Figures(3)  /  Tables(1)

    Article views7202 PDF downloads1074 Cited by: 72
    • Received : 2020-08-24
    • Accepted : 2020-11-01
    • Published : 2021-01-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return