Yang Jianying, Huo Zhiguo, Wang Peijuan, et al. Evaluation index construction and hazard risk assessment on apple drought in northern china. J Appl Meteor Sci, 2021, 32(1): 25-37. DOI:  10.11898/1001-7313.20210103.
Citation: Yang Jianying, Huo Zhiguo, Wang Peijuan, et al. Evaluation index construction and hazard risk assessment on apple drought in northern china. J Appl Meteor Sci, 2021, 32(1): 25-37. DOI:  10.11898/1001-7313.20210103.

Evaluation Index Construction and Hazard Risk Assessment on Apple Drought in Northern China

DOI: 10.11898/1001-7313.20210103
  • Received Date: 2020-08-20
  • Rev Recd Date: 2020-10-19
  • Publish Date: 2021-01-31
  • It is of great merit to construct apple drought index and analyze its hazard risk so as to support apple drought monitoring, prevention and mitigation, as well as agricultural disaster insurance management. Based on meteorological data, associated with historical disaster and phenophase data, apple drought index (DI) in northern China is firstly constructed, which fully considered previous and current water demand and precipitation supply. Afterwards, historical disaster remodeling, disaster sample reconstruction and process-based historical disaster analysis are comprehensively used as key technologies in evaluating the level of apple drought, integrating the independent sample T-test, Kolmogorov-Smirnov(K-S) test, cumulative probability inverse method, etc. Meanwhile, the apple drought risk is consequently estimated to seek the characteristics of apple drought hazard in detail. The results show that there are significant differences by independent T-test of drought index (DI) between historical recorded disaster samples and the non-disaster samples in three apple tree phenophases, i.e., the tree germinating to flower budding period, flower budding to full bloom and full bloom to mature periods (passing the test of 0.05 level). Therefore, the apple drought index constructed can effectively represent the drought disaster in different stages of apple development. The threshold of DI in the same level is higher in tree germinating to flower budding period, followed by flower budding to full bloom and full bloom to mature periods. The drought risk during flower budding to full bloom is high with regional average apple drought hazard index (M) of 0.44, followed by tree germinating to flower budding period and full bloom to mature period, with reginal average M of 0.40 and 0.25, respectively. Furthermore, the Bohai Bay region and northern Loess Plateau are detected as high-risk areas of apple drought. The evaluation method of apple drought based on historical disaster processing and re-analysis can provide new ideas for economic forest and fruit meteorological disaster research. The results of apple drought hazard risk assessment could provide evidence for the prevention and mitigation of apple drought in northern China.
  • Fig. 1  Distribution of weather stations in study area

    Fig. 2  Normal distribution cumulative probability of DI at different stages

    Fig. 3  Station ratio of drought probability at different stages of northern apple in different development stages

    Fig. 4  Spatial distribution of apple drought hazard index in northern China

    (a)tree germinating to flower budding, (b)flower budding to full bloom, (c)full bloom to mature, (d)tree active period

    Table  1  Number of apple drought samples in different decades

    时段 发育阶段 合计
    果树萌动-萌芽期 萌芽-盛花期 盛花-成熟期
    1981—1990年 6 2 5 13
    1991—2000年 6 16 44 66
    2001—2010年 5 20 36 61
    2011—2017年 8 12 47 67
    DownLoad: Download CSV

    Table  2  Detailed information of DI in disaster and non-disaster samples and independent sample T-test in different stages

    发育阶段 样本集合 样本量 最大值 最小值 下四分位 上四分位 中位数
    果树萌动-萌芽期 有灾 25 0.99 0.78 0.82 0.92 0.88
    无灾(1991年) 106 0.39 -6.36 -0.25 0.33 0.17
    无灾(2003年) 92 0.46 -3.17 0.02 0.34 0.22
    萌芽-盛花期 有灾 50 0.98 0.60 0.79 0.90 0.85
    无灾(1991年) 131 0.41 -3.20 -1.17 0.29 0.08
    无灾(2003年) 103 0.39 -3.03 -2.49 0.27 0.13
    盛花-成熟期 有灾 132 1.00 0.51 0.69 0.88 0.76
    无灾(1991年) 38 -0.10 -1.60 -0.32 -0.14 -0.28
    无灾(2003年) 118 0.05 -2.96 -1.05 -0.13 -0.38
    DownLoad: Download CSV

    Table  3  Normal distribution parameters of DI and 25%, 50% and 75% cumulative probability inverse values

    发育阶段 平均值 标准差 累积概率反函数值
    25% 50% 75%
    果树萌动-萌芽期 0.875 0.063 0.83 0.88 0.92
    萌芽-盛花期 0.855 0.084 0.80 0.85 0.91
    盛花-成熟期 0.780 0.108 0.71 0.78 0.85
    DownLoad: Download CSV

    Table  4  Evaluation level of apple drought at different stages

    发育阶段 等级 干旱指数
    果树萌动-萌芽期 0.83≤DI < 0.88
    0.88≤DI < 0.92
    DI≥0.92
    萌芽-盛花期 0.80≤DI < 0.85
    0.85≤DI < 0.91
    DI≥0.91
    盛花-成熟期 0.71≤DI < 0.78
    0.78≤DI < 0.85
    DI≥0.85
    DownLoad: Download CSV
  • [1]
    Cheng X, Sun S, Zhang Z T, et al.Spatial-temporal distribution of apples with different drought levels in Northern China.J Appl Meteor Sci, 2020, 31(4): 405-416. doi:  10.11898/1001-7313.20200403
    [2]
    Zhang C Y, Chang Q, Huo X X.Analysis on the layout of China's apple production transition.Economic Geography, 2018(8): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JJDL201808018.htm
    [3]
    Ren F, Shi J E.Characteristics of annual rainfall in arid and semi-arid region of China.J Appl Meteor Sci, 1995, 6(4): 501-504. http://yyqxxb.xml-journal.net/article/id/19950477
    [4]
    Qi Y, Chen H Y, Fang S B, et al.Variation characteristics of extreme climate events in Northwest China during 1961-2010.Journal of Arid Meteorology, 2015, 33(6): 963-969. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201506011.htm
    [5]
    Xu J W, Ju H, Liu Q, et al.Variation of drought and regional response to climate change in Huang-Huai-Hai Plain.Acta Ecologica Sinica, 2014, 34(2): 460-470.
    [6]
    Narayan B, Su G H, Tae M Y.Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus×domesticaBorkh.).Scientia Horticulturae, 2019, 246: 535-543. doi:  10.1016/j.scienta.2018.11.021
    [7]
    Yang Q, Fucang Z, Fu L.Effect of different drip irrigation methods and fertilization on growth, physiology and water use of young apple tree.Scientia Horticulturae, 2011, 129(1): 119-126. doi:  10.1016/j.scienta.2011.03.019
    [8]
    Guo A X, Shi X Y, Wang Y X, et al.Effect of drought stress on the photosynthesis, chloroplast ultrastructure and antioxidant system in leaves of three apple rootstocks.Agricultural Research in the Arid Areas, 2019, 37(1): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201901026.htm
    [9]
    You C H, Jing J, Ma Y W.Main meteorological disasters and countermeasures of apple growing in Baota district.Journal of Agricultural Catastrophology, 2019, 9(3): 84-85. https://www.cnki.com.cn/Article/CJFDTOTAL-NZYJ201903035.htm
    [10]
    Wang B, Ding X Q, Lin Q F.Analysis of apple and meteorological conditions of Yantai in 2016.Shanxi Fruits, 2017(4): 18-19. doi:  10.3969/j.issn.1005-345X.2017.04.008
    [11]
    Tewari A.Crop-weather relationship:A composite weather index approach for apple yield analysis.Indian Economic Review, 1991, 26(1): 65-79.
    [12]
    Guo Z X, Wang J H, Bai Q F, et al.Comprehensive risk assessment and zoning of drought of Shaanxi apple fruitlet.Journal of Agricultural Catastrophology, 2013(8): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-NZYJ201308020.htm
    [13]
    Xu Y P, Yao X H, Yuan Y P, et al.A study on assessment technology of meteorological disaster for apple growth in Tianshui.Journal of Natural Resources, 2010, 25(1): 155-161.
    [14]
    Ma Y Q, Xu Z D, Liu C M, et al.Analysis of characteristics of farmland moisture content in apple producing area of Weibei dry plateau in Shaanxi.Agricultural Research in the Arid Areas, 2009, 27(2): 54-59.
    [15]
    Wang J H, Bai Q F, Liang Y, et al.Apple drought index and apple drought risk distribution in Shaanxi at county level.Meteorological Science and Technology, 2014, 42(3): 516-523.
    [16]
    Hu Y Q, Bian Y X, Huang M Y, et al.Characteristics of hailstone distribution based on disaster information in Beijing from 1981 to 2017.J Appl Meteor Sci, 2019, 30(6): 710-721. doi:  10.11898/1001-7313.20190607
    [17]
    Mei X R.Atlas of Chinese Agricultural Meteorological Resources.Hangzhou:Zhejiang Science and Technology Press, 2015.
    [18]
    National Bureau of Statistics.China Statistical Yearbook(2016).Beijing:China Statistics Press, 2017.
    [19]
    Zeng X, Liu J T.Apple and Meteorology.Beijing:China Meteorological Press, 1988.
    [20]
    Wen K G, Zang J S.Chinese Meteorological Disasters (Hebei).Beijing:China Meteorological Press, 2007.
    [21]
    Wen K G, Wang J G, Sun D Q.Chinese Meteorological Disasters (Shandong).Beijing:China Meteorological Press, 2006.
    [22]
    Wen K G, Pang T H.Chinese Meteorological Disasters (Henan).Beijing:China Meteorological Press, 2005.
    [23]
    Wen K G, Zhai Y A.Chinese Meteorological Disasters (Shaanxi).Beijing:China Meteorological Press, 2005.
    [24]
    Wen K G, Liu Q T.Chinese Meteorological Disasters (Shanxi).Beijing:China Meteorological Press, 2005.
    [25]
    Wen K G, Dong A X.Chinese Meteorological Disasters (Gansu).Beijing:China Meteorological Press, 2005.
    [26]
    Wen K G, Xia P M.Chinese Meteorological Disasters (Ningxia).Beijing:China Meteorological Press, 2007.
    [27]
    Wen K G, Xie P.Chinese Meteorological Disasters (Beijing).Beijing:China Meteorological Press, 2005.
    [28]
    Wen K G, Wang Z X.Chinese Meteorological Disasters (Tianjing).Beijing:China Meteorological Press, 2008.
    [29]
    China Meteorological Administration.China Meteorological Disaster Yearbook(2006-2016).Beijing: China Meteorological Press, 2006-2016.
    [30]
    Allen R G, Pereira L S, Rase D, et al.Crop Evaportranspiration Guide Lines for Computing Crop Water Requirements.FAO Irrigation and Drainage Paper No.56.Rome, 1998.
    [31]
    Gong D Z, Kang S Z, Zhang J H, et al.Measuring and estimating evapotranspiration of an apple(Malus pumila Mill.) orchard.Journal of Shenyang Agricultural University, 2004, 35(5): 429-431.
    [32]
    Zuo Y B, Tian C Y, Tang J W, et al.Studies on ETc and Kc of main crops in northern Shandong province.Chinese Journal of Agrometeorology, 2009, 30(1): 70-73.
    [33]
    Gao X B, Dong H Q.Data Analysis and SPSS Application.Beijing:Tsinghua University Press, 2007.
    [34]
    Zhou Y, Qian Z H, He W P, et al.Characteristics and evolutions of probability distribution of summer extreme high temperatures in China.J Appl Meteor Sci, 2011, 22(2): 145-151. http://yyqxxb.xml-journal.net/article/id/20110203
    [35]
    Yang J Y, Huo Z G, Wu L, et al.Evaluation level construction and analysis of risk on rice flood in Southwest China.Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(16): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201516019.htm
    [36]
    Wang T Y, Huo Z G, Yang J Y, et al.Process grade indicator construction and evolution characteristics of late rice flood in Hunan.J Appl Meteor Sci, 2019, 30(1): 35-48. doi:  10.11898/1001-7313.20190104
    [37]
    Wang P J, Huo Z G, Yang J Y, et al.Indicators of chilling damage for spring maize based on heat index in Northeast China.J Appl Meteor Sci, 2019, 30(1): 13-24. doi:  10.11898/1001-7313.20190102
    [38]
    Yang J Y, Huo Z G, Wang P J, et al.Occurrence characteristics of early rice heat disaster in Jiangxi Province.J Appl Meteor Sci, 2020, 31(1): 42-51. doi:  10.11898/1001-7313.20200104
    [39]
    Wu L, Huo Z G, Jiang Y, et al.Trends and risk of spring low-temperature damage to early rice in southern China against the background of global warming.Acta Ecologica Sinica, 2016, 36(5): 1263-1271. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201605009.htm
    [40]
    Bian J, Li S L.He J H.Risk assessment of flood disaster in the mid-lower reaches of the Yangtze.Acta Ecologica Sinica, 2011, 22(5): 604-611. http://yyqxxb.xml-journal.net/article/id/20110511
    [41]
    Hu Z Y, Zhou J J, Zhang L L, et al.Climate dry-wet change and drought evolution characteristics of different dry-wet areas in northern China.Acta Ecologica Sinica, 2018, 38(6): 1908-1919. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201806003.htm
    [42]
    Bai Q F, Huo Z G, Wang J H, et al.Progress in research on meteorological disaster indicators of major fruit trees in China.Journal of Fruit Science, 2019, 36(9): 1229-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201909013.htm
    [43]
    Cheng X, Sun S, Zhang F L, et al.Spatial and temporal distributions of apple drought in northern China.J Appl Meteor Sci, 2020, 31(1): 63-73. doi:  10.11898/1001-7313.20200106
    [44]
    Fu B P.Selected Papers of Fu Baopu.Beijing:China Meteorological Press, 2011.
    [45]
    Song X L, Gao X D, Wu P, et al.Drought responses of profile plant-available water and fine-root distributions in apple (Malus pumila Mill.) orchards in a loessial, semiarid, hilly area of China.Science of the Total Environment, 2020, 723: 137739.
    [46]
    Wu L, Huo Z G, Zhang L, et al.Level indicators construction and temporal-spatial distribution features of agricultural flood in the southwest of China.Chinese Journal of Applied Ecology, 2015, 26(8): 2473-2481.
    [47]
    Yang J Y, Huo Z G, Wang P J, et al.Dynamic identification of double-early rice heat and its spatiotemporal characteristics in Jiangxi Province, China.Chinese Journal of Applied Ecology, 2020, 31(1): 199-207.
    [48]
    Feng Z W, Jiang Y M, Tian Y Z, et al.Research on stem sap flow character of "Fuji" apple trees and the response to main metrological factors.Journal of Shandong Agricultural University(Natural Science), 2013, 44(1): 18-24.
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(4)

    Article views (1704) PDF downloads(120) Cited by()
    • Received : 2020-08-20
    • Accepted : 2020-10-19
    • Published : 2021-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint