Li Ying, Zhao Guoqiang, Chen Huailiang, et al. WOFOST model parameter calibration based on agro-climatic division of winter wheat. J Appl Meteor Sci, 2021, 32(1): 38-51. DOI:  10.11898/1001-7313.20210104.
Citation: Li Ying, Zhao Guoqiang, Chen Huailiang, et al. WOFOST model parameter calibration based on agro-climatic division of winter wheat. J Appl Meteor Sci, 2021, 32(1): 38-51. DOI:  10.11898/1001-7313.20210104.

WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat

DOI: 10.11898/1001-7313.20210104
  • Received Date: 2020-09-30
  • Rev Recd Date: 2020-11-02
  • Publish Date: 2021-01-31
  • Crop model parameter calibration is an important work of extending point-scale crop model to regional application.Using K-means method with the main meteorological factors affecting the growth and yield formation of winter wheat obtained from 113 meteorological stations from 1981 to 2010 as zoning indicators, Henan Province is divided into five different agro-climatic ecological zones and the cumulative temperature parameters are calculated for each zone. Based on the observations during 2013-2017, nine sensitive parameters are obtained by using Sobol global sensitivity analysis method to analyze and select crop parameters with total sensitivity index greater than 0.01. The sensitive parameters selected from different agro-climatic ecological zones of different winter wheat varieties are highly consistent. A cost function is constructed with yield and leaf area index(LAI), and each partition is calibrated for sensitive parameters using Differential Evolution Markov Chain method. The results show that the simulated leaf area index in the different agro-climatic ecological zones are in good agreement with the observed values, the root mean square error (RMSE) using the posterior mean value of regional parameters adjustment to simulate the LAI of key growth periods is 0.655, which is obviously higher than that of using default parameters or using the same set of optimized parameters in the whole study area. Results show that the WOFOST model based on agro-climatic division can accurately simulate the growth process of crops. In terms of yield estimation accuracy, the yield simulation accuracy of regional parameter adjustment is also significantly improved. The best accuracy of simulated yield is achieved by using the posterior mean of regional parameters and RMSE is 672.016 kg·hm-2, 70.55% reduction than the yield simulation error when using the default parameters, or 48.75% reduction than the yield simulation error when the same set of optimized parameters (posterior mean) are used for the entire area. The method takes advantage of the knowledge of agro-climatology with the scientific and efficient Differential Evolution Markov Chain optimization algorithm to provide a scientific and theoretical basis for the application of crop models and optimization of regional model parameters through rational and efficient zonal calibration of the study area.
  • Fig. 1  Agro-climatic division of winter wheat in Henan Province

    Fig. 2  Total sensitivity index of parameters in five agro-climatic ecological zones

    Fig. 3  Verification results of yield and leaf area index in 2019

    Table  1  Accumulated temperature parameters of winter wheat in different zones(unit:℃·d)

    生育阶段 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 Ⅴ区
    播种至出苗 1170 1180 1100 1150 1250
    出苗至开花 600 620 610 600 610
    开花至成熟 110 120 120 130 120
    DownLoad: Download CSV

    Table  2  The proportion of changes of parameters to be analyzed around the default value

    参数 定义 最小比例 最大比例
    AM00 发育期为0时CO2最大同化速率 0.7 1.5
    AM10 发育期为1时CO2最大同化速率 0.7 1.5
    AM13 发育期为1.3时CO2最大同化速率 0.7 1.5
    AM20 发育期为2时CO2最大同化速率 0.7 1.5
    SL00 发育期为0时比叶面积 0.7 1.5
    SL05 发育期为0.5时比叶面积 0.7 1.5
    SL20 发育期为2时比叶面积 0.7 1.5
    FL 总物质分配到叶片的比例 0.5 2.0
    FO 总物质分配到储存器官的比例 0.8 1.2
    FR 总物质分配到根的比例 0.5 2.0
    SP 35℃时叶片的生命周期 0.7 1.5
    TB 出苗最低温度 0.5 1.5
    TD 初始总干物质重量 0.9 1.3
    TE 出苗最高有效温度 0.9 1.3
    TM00 日平均温度为0℃时CO2最大同化速率减小因子 0.7 1.5
    TM10 日平均温度为10℃时CO2最大同化速率减小因子 0.7 1.3
    TM15 日平均温度为15℃时CO2最大同化速率减小因子 0.7 1.5
    TM25 日平均温度为25℃时CO2最大同化速率减小因子 0.7 1.5
    TM35 日平均温度为35℃时CO2最大同化速率减小因子 0.7 1.5
    RD 根的相对死亡速率 0.9 1.0
    RG 叶面积指数最大日增量 0.9 1.3
    DownLoad: Download CSV

    Table  3  Modeling data and verification data used for parameter calibration

    研究区 优化数据 验证数据
    年份 站点 年份 站点
    Ⅰ区 2013 林州
    2014 汤阴
    2015 安阳 2018—2019 汤阴
    2016 濮阳
    2017 范县
    Ⅱ区 2013 郑州
    2014 商丘
    2015 伊川 2018—2019 郑州
    2016 济源
    2017 郑州
    Ⅲ区 2013 许昌
    2014 许昌
    2015 黄泛区 2018—2019 黄泛区
    2016 驻马店
    2017 南阳
    Ⅳ区 2013 信阳
    2014 正阳
    2015 新野 2018—2019 潢川
    2016 潢川
    2017 固始
    Ⅴ区 2013 卢氏
    2014 三门峡
    2015 三门峡 2018—2019 卢氏
    2016 卢氏
    2017 卢氏
    DownLoad: Download CSV

    Table  4  The posteriori distribution of sensitive parameters in Zone Ⅰ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.369 1.414 1.470 0.00396 [1.361, 1.377]
    AM10 1.351 1.374 1.426 0.00301 [1.345, 1.357]
    AM13 0.729 0.722 0.704 0.00070 [0.728, 0.731]
    SL00 1.443 1.455 1.500 0.00130 [1.440, 1.445]
    SL05 0.774 0.770 0.707 0.00127 [0.771, 0.776]
    FL 1.904 1.932 1.994 0.00220 [1.900, 1.909]
    FO 0.857 0.856 0.860 0.00023 [0.856, 0.857]
    FR 1.423 1.429 1.487 0.00131 [1.421, 1.426]
    SP 0.831 0.829 0.826 0.00026 [0.831, 0.832]
    DownLoad: Download CSV

    Table  5  The posteriori distribution of sensitive parameters in Zone Ⅱ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.761 0.750 0.704 0.00176 [0.757, 0.764]
    AM10 1.397 1.410 1.412 0.00274 [1.392, 1.403]
    AM13 0.793 0.785 0.760 0.00235 [0.788, 0.798]
    SL00 1.350 1.361 1.458 0.00385 [1.342, 1.357]
    SL05 0.772 0.759 0.737 0.00195 [0.768, 0.775]
    FL 1.823 1.848 1.973 0.00496 [1.813, 1.833]
    FO 0.921 0.920 0.901 0.00055 [0.919, 0.922]
    FR 0.946 0.964 1.112 0.00573 [0.934, 0.957]
    SP 0.822 0.824 0.824 0.00034 [0.822, 0.823]
    DownLoad: Download CSV

    Table  6  The posteriori distribution of sensitive parameters in Zone Ⅲ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.715 0.711 0.702 0.00040 [0.714, 0.716]
    AM10 0.891 0.872 0.869 0.00319 [0.885, 0.897]
    AM13 0.738 0.730 0.700 0.00089 [0.737, 0.740]
    SL00 1.352 1.376 1.498 0.00296 [1.346, 1.358]
    SL05 1.082 1.067 1.144 0.00383 [1.075, 1.090]
    FL 1.326 1.334 1.215 0.00426 [1.317, 1.334]
    FO 0.809 0.807 0.802 0.00023 [0.809, 0.810]
    FR 0.790 0.787 0.794 0.00397 [0.782, 0.798]
    SP 0.932 0.938 0.940 0.00042 [0.932, 0.933]
    DownLoad: Download CSV

    Table  7  The posteriori distribution of sensitive parameters in Zone Ⅳ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.446 1.460 1.496 0.00094 [1.444, 1.447]
    AM10 1.118 1.127 0.744 0.00472 [1.109, 1.128]
    AM13 1.418 1.441 1.497 0.00151 [1.415, 1.421]
    SL00 1.174 1.188 0.918 0.00304 [1.168, 1.180]
    SL05 0.799 0.777 0.711 0.00164 [0.796, 0.802]
    FL 1.090 1.076 1.297 0.00250 [1.085, 1.095]
    FO 1.033 1.021 1.124 0.00076 [1.031, 1.034]
    FR 0.625 0.595 0.602 0.00198 [0.621, 0.629]
    SP 0.834 0.829 0.828 0.00027 [0.833, 0.834]
    DownLoad: Download CSV

    Table  8  The posteriori distribution of sensitive parameters in Zone Ⅴ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.082 1.070 1.333 0.00562 [1.071, 1.093]
    AM10 0.732 0.724 0.705 0.00068 [0.730, 0.732]
    AM13 0.728 0.721 0.708 0.00057 [0.727, 0.729]
    SL00 1.481 1.484 1.492 0.00036 [1.480, 1.481]
    SL05 0.718 0.715 0.708 0.00026 [0.717, 0.718]
    FL 1.880 1.885 1.792 0.00203 [1.876, 1.884]
    FO 0.937 0.935 0.915 0.00046 [0.936, 0.938]
    FR 0.532 0.527 0.502 0.00059 [0.531, 0.533]
    SP 0.738 0.741 0.748 0.00030 [0.738, 0.739]
    DownLoad: Download CSV

    Table  9  The posteriori distribution of sensitive parameters for the whole Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.758 0.747 0.756 0.00170 [0.755, 0.761]
    AM10 0.724 0.717 0.709 0.00072 [0.722, 0.725]
    AM13 0.714 0.711 0.702 0.00044 [0.714, 0.715]
    SL00 1.483 1.485 1.499 0.00048 [1.482, 1.484]
    SL05 0.712 0.709 0.701 0.00032 [0.711, 0.712]
    FL 1.855 1.853 1.856 0.00178 [1.851, 1.858]
    FO 0.901 0.899 0.892 0.00046 [0.900, 0.902]
    FR 0.553 0.544 0.538 0.00149 [0.550, 0.556]
    SP 0.896 0.896 0.906 0.00015 [0.895, 0.896]
    DownLoad: Download CSV
  • [1]
    Edwards D, Hamson M.Guide to Mathermatical Modeling.Boca Raton Florida, US:CRC Press, Inc., 1990.
    [2]
    Xie Y, James R K.A review on the development of crop modeling and its application.Acta Agronomica Sinica, 2002, 28(2): 190-195. doi:  10.3321/j.issn:0496-3490.2002.02.009
    [3]
    Boote K J, Jones J W, Pickering N B.Potential uses and limitations of crop models.Agronomy Journal, 1996, 88: 704-716. doi:  10.2134/agronj1996.00021962008800050005x
    [4]
    Lin Z H, Mo X G, Xiang Y Q.Research advances on crop growth models.Acta Agronomica Sinica, 2003, 29(5): 750-758. doi:  10.3321/j.issn:0496-3490.2003.05.021
    [5]
    Gao Y G, Gu H, Ji J Z, et al.Simulation study of climate change impact on crop yield in Heilongjiang Province from 1961 to 2003.J Appl Meteor Sci, 2007, 18(4): 532-538. doi:  10.3969/j.issn.1001-7313.2007.04.014
    [6]
    Zhang L, Hou Y Y, Zheng C L, et al.The construction and application of assessing index to crop growing condition.J Appl Meteor Sci, 2019, 30(5): 543-554. doi:  10.11898/1001-7313.20190503
    [7]
    Chen H L, Li Y, Tian H W, et al.Improvement of regional-scale winter wheat growth modeling with sub-pixel information.Chinese Journal of Ecology, 2018, 37(7): 2221-2228.
    [8]
    Curnel Y, de Wit A J W, Duveiller G, et al.Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment.Agric For Meteorol, 2011, 151(12): 1843-1855. doi:  10.1016/j.agrformet.2011.08.002
    [9]
    Li Y, Chen H L, Tian H W, et al.Estimation of winter wheat yield based on coupling remote sensing information and WheatSM model.Chinese Journal of Ecology, 2019, 38(7): 2258-2264.
    [10]
    Sun L L, Ma Y P, Jing Y S, et al.Assimilation of observations with crop growth model based on the constrained analysis of parameters.J Appl Meteor Sci, 2013, 24(3): 287-296. doi:  10.3969/j.issn.1001-7313.2013.03.004
    [11]
    Huang J X, Huang H, Ma H Y, et al.Markov Chain Monte Carlo based WOFOST model parameters calibration and uncertainty analysis.Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 113-119. doi:  10.11975/j.issn.1002-6819.2018.16.015
    [12]
    Ma Y P, Wang S L, Wang F T.A preliminary study on the application of crop simulation models in agrometeorological services.J Appl Meteor Sci, 2005, 16(3): 293-303. doi:  10.3969/j.issn.1001-7313.2005.03.003
    [13]
    Liu B C, Wang S L, Zhuang L W, et al.Study of low temperature damage prediction applications in EN, China based on a scaling up maize dynamic model.J Appl Meteor Sci, 2003, 14(5): 616-625. doi:  10.3969/j.issn.1001-7313.2003.05.012
    [14]
    Qin P C, Liu M, Wan S Q, et al.Methods for yield forecast based on crop model with incomplete weather observations.J Appl Meteor Sci, 2016, 27(4): 407-416. doi:  10.11898/1001-7313.20160403
    [15]
    Xu W, Qin Q M, Zhang T Y, et al.Time-series LAI simulation of winter wheat based on WOFOST model calibrated by SCE and assimilated by EnKF.Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 166-173.
    [16]
    Zhang K.Parameter Sensitivity Analysis and Optimization for Remote Sensing Based Evapotranspiration Model.Lanzhou:Lanzhou University, 2018.
    [17]
    Duan G H, Tian W Z, Wen H X, et al.Analysis on yield components and parent utilization evolution of high yield winter wheat in Henan province in the past 13 years.Journal of Shanxi Agricultural Sciences, 2020, 48(2): 148-153.
    [18]
    Hijmans R J, Guiking-Lens I M, Van Diepen C A.WOFOST 6.0:User's Guide for the WOFOST 6.0 Crop Growth Simulation Model.Wageningen:DLO Winand Staring Centre, 1994.
    [19]
    Xing A, Zhuo Z Q, Zhao Y Z, et al.Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method.Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 161-171.
    [20]
    Zhang H, Liu W C, Li S Y.Applicability analysis of WOFOST model for winter wheat in Henan.Meteorological and Environmental Sciences, 2019, 42(1): 34-40.
    [21]
    Qiu M J, Song Y B, Wang J L, et al.Integrated technology of yield dynamic prediction of winter wheat in Shandong province.J Appl Meteor Sci, 2016, 27(2): 191-200. doi:  10.11898/1001-7313.20160207
    [22]
    Allen R G, Pereira L S, Raes D, et al.Crop Evapotranspiration:FAO Irrigation and Drainage Paper No.56.FAO, Rome, Italy, 1998.
    [23]
    Zhang W J, Gu X F, Chen L F, et al.An algorithm for initilizing of K-Means clustering based on Mean-standard deviation.Journal of Remote Sensing, 2006, 10(5): 715-721.
    [24]
    Sobol I M.Sensitivity estimates for nonlinear mathematical models.Math Model Comput Exp, 1993, 1(4): 407-414.
    [25]
    Sobol I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.Mathematics and computers in simulation, 2001, 55(1-3): 271-280. doi:  10.1016/S0378-4754(00)00270-6
    [26]
    Tang Y, Reed P, Wagener T, et al.Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation.Hydrology and Earth System Sciences, 2007, 3(6): 793-817.
    [27]
    Nossent J, Elsen P, Bauwens W.Sobol'sensitivity analysis of a complex environmental model.Environmental Modelling & Software, 2011, 26: 1515-1525.
    [28]
    Fu T F.Clustering-based Stochastic Gradient Markov Chain Monte Carlo.Shanghai:Shanghai Jiao Tong University, 2018.
    [29]
    Hasting W.Monte Carlo sampling methods using Markov Chains and their applications.Biometrika, 1970, 57: 97-109. doi:  10.1093/biomet/57.1.97
    [30]
    Sun M.MCMC algorithm and its application.Advances in Applied Mathematics, 2018, 7(12): 1626-1637.
    [31]
    Braak C J.A Markov Chain Monte Carlo version of the genetic algorithm differential evolution.Stats and Computing, 2006, 16: 239-249. doi:  10.1007/s11222-006-8769-1
    [32]
    Zhou G S, He Q J, Ji Y H.Advances in the international action and agricultural measurements of adaptation to climate change.J Appl Meteor Sci, 2016, 27(5): 527-533. doi:  10.11898/1001-7313.20160502
    [33]
    Guo J P.Advances in impacts of climate change on agricultural production in China.J Appl Meteor Sci, 2015, 26(1): 1-11. doi:  10.11898/1001-7313.20150101
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(9)

    Article views (2239) PDF downloads(144) Cited by()
    • Received : 2020-09-30
    • Accepted : 2020-11-02
    • Published : 2021-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint