Li Ying, Zhao Guoqiang, Chen Huailiang, et al. WOFOST model parameter calibration based on agro-climatic division of winter wheat. J Appl Meteor Sci, 2021, 32(1): 38-51. DOI: 10.11898/1001-7313.20210104.
Citation: Li Ying, Zhao Guoqiang, Chen Huailiang, et al. WOFOST model parameter calibration based on agro-climatic division of winter wheat. J Appl Meteor Sci, 2021, 32(1): 38-51. DOI: 10.11898/1001-7313.20210104.

WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat

More Information
  • Crop model parameter calibration is an important work of extending point-scale crop model to regional application.Using K-means method with the main meteorological factors affecting the growth and yield formation of winter wheat obtained from 113 meteorological stations from 1981 to 2010 as zoning indicators, Henan Province is divided into five different agro-climatic ecological zones and the cumulative temperature parameters are calculated for each zone. Based on the observations during 2013-2017, nine sensitive parameters are obtained by using Sobol global sensitivity analysis method to analyze and select crop parameters with total sensitivity index greater than 0.01. The sensitive parameters selected from different agro-climatic ecological zones of different winter wheat varieties are highly consistent. A cost function is constructed with yield and leaf area index(LAI), and each partition is calibrated for sensitive parameters using Differential Evolution Markov Chain method. The results show that the simulated leaf area index in the different agro-climatic ecological zones are in good agreement with the observed values, the root mean square error (RMSE) using the posterior mean value of regional parameters adjustment to simulate the LAI of key growth periods is 0.655, which is obviously higher than that of using default parameters or using the same set of optimized parameters in the whole study area. Results show that the WOFOST model based on agro-climatic division can accurately simulate the growth process of crops. In terms of yield estimation accuracy, the yield simulation accuracy of regional parameter adjustment is also significantly improved. The best accuracy of simulated yield is achieved by using the posterior mean of regional parameters and RMSE is 672.016 kg·hm-2, 70.55% reduction than the yield simulation error when using the default parameters, or 48.75% reduction than the yield simulation error when the same set of optimized parameters (posterior mean) are used for the entire area. The method takes advantage of the knowledge of agro-climatology with the scientific and efficient Differential Evolution Markov Chain optimization algorithm to provide a scientific and theoretical basis for the application of crop models and optimization of regional model parameters through rational and efficient zonal calibration of the study area.
  • Fig  1.   Agro-climatic division of winter wheat in Henan Province

    Fig  2.   Total sensitivity index of parameters in five agro-climatic ecological zones

    Fig  3.   Verification results of yield and leaf area index in 2019

    Table  1   Accumulated temperature parameters of winter wheat in different zones(unit:℃·d)

    生育阶段 Ⅰ区 Ⅱ区 Ⅲ区 Ⅳ区 Ⅴ区
    播种至出苗 1170 1180 1100 1150 1250
    出苗至开花 600 620 610 600 610
    开花至成熟 110 120 120 130 120
    DownLoad: CSV

    Table  2   The proportion of changes of parameters to be analyzed around the default value

    参数 定义 最小比例 最大比例
    AM00 发育期为0时CO2最大同化速率 0.7 1.5
    AM10 发育期为1时CO2最大同化速率 0.7 1.5
    AM13 发育期为1.3时CO2最大同化速率 0.7 1.5
    AM20 发育期为2时CO2最大同化速率 0.7 1.5
    SL00 发育期为0时比叶面积 0.7 1.5
    SL05 发育期为0.5时比叶面积 0.7 1.5
    SL20 发育期为2时比叶面积 0.7 1.5
    FL 总物质分配到叶片的比例 0.5 2.0
    FO 总物质分配到储存器官的比例 0.8 1.2
    FR 总物质分配到根的比例 0.5 2.0
    SP 35℃时叶片的生命周期 0.7 1.5
    TB 出苗最低温度 0.5 1.5
    TD 初始总干物质重量 0.9 1.3
    TE 出苗最高有效温度 0.9 1.3
    TM00 日平均温度为0℃时CO2最大同化速率减小因子 0.7 1.5
    TM10 日平均温度为10℃时CO2最大同化速率减小因子 0.7 1.3
    TM15 日平均温度为15℃时CO2最大同化速率减小因子 0.7 1.5
    TM25 日平均温度为25℃时CO2最大同化速率减小因子 0.7 1.5
    TM35 日平均温度为35℃时CO2最大同化速率减小因子 0.7 1.5
    RD 根的相对死亡速率 0.9 1.0
    RG 叶面积指数最大日增量 0.9 1.3
    DownLoad: CSV

    Table  3   Modeling data and verification data used for parameter calibration

    研究区 优化数据 验证数据
    年份 站点 年份 站点
    Ⅰ区 2013 林州
    2014 汤阴
    2015 安阳 2018—2019 汤阴
    2016 濮阳
    2017 范县
    Ⅱ区 2013 郑州
    2014 商丘
    2015 伊川 2018—2019 郑州
    2016 济源
    2017 郑州
    Ⅲ区 2013 许昌
    2014 许昌
    2015 黄泛区 2018—2019 黄泛区
    2016 驻马店
    2017 南阳
    Ⅳ区 2013 信阳
    2014 正阳
    2015 新野 2018—2019 潢川
    2016 潢川
    2017 固始
    Ⅴ区 2013 卢氏
    2014 三门峡
    2015 三门峡 2018—2019 卢氏
    2016 卢氏
    2017 卢氏
    DownLoad: CSV

    Table  4   The posteriori distribution of sensitive parameters in Zone Ⅰ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.369 1.414 1.470 0.00396 [1.361, 1.377]
    AM10 1.351 1.374 1.426 0.00301 [1.345, 1.357]
    AM13 0.729 0.722 0.704 0.00070 [0.728, 0.731]
    SL00 1.443 1.455 1.500 0.00130 [1.440, 1.445]
    SL05 0.774 0.770 0.707 0.00127 [0.771, 0.776]
    FL 1.904 1.932 1.994 0.00220 [1.900, 1.909]
    FO 0.857 0.856 0.860 0.00023 [0.856, 0.857]
    FR 1.423 1.429 1.487 0.00131 [1.421, 1.426]
    SP 0.831 0.829 0.826 0.00026 [0.831, 0.832]
    DownLoad: CSV

    Table  5   The posteriori distribution of sensitive parameters in Zone Ⅱ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.761 0.750 0.704 0.00176 [0.757, 0.764]
    AM10 1.397 1.410 1.412 0.00274 [1.392, 1.403]
    AM13 0.793 0.785 0.760 0.00235 [0.788, 0.798]
    SL00 1.350 1.361 1.458 0.00385 [1.342, 1.357]
    SL05 0.772 0.759 0.737 0.00195 [0.768, 0.775]
    FL 1.823 1.848 1.973 0.00496 [1.813, 1.833]
    FO 0.921 0.920 0.901 0.00055 [0.919, 0.922]
    FR 0.946 0.964 1.112 0.00573 [0.934, 0.957]
    SP 0.822 0.824 0.824 0.00034 [0.822, 0.823]
    DownLoad: CSV

    Table  6   The posteriori distribution of sensitive parameters in Zone Ⅲ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.715 0.711 0.702 0.00040 [0.714, 0.716]
    AM10 0.891 0.872 0.869 0.00319 [0.885, 0.897]
    AM13 0.738 0.730 0.700 0.00089 [0.737, 0.740]
    SL00 1.352 1.376 1.498 0.00296 [1.346, 1.358]
    SL05 1.082 1.067 1.144 0.00383 [1.075, 1.090]
    FL 1.326 1.334 1.215 0.00426 [1.317, 1.334]
    FO 0.809 0.807 0.802 0.00023 [0.809, 0.810]
    FR 0.790 0.787 0.794 0.00397 [0.782, 0.798]
    SP 0.932 0.938 0.940 0.00042 [0.932, 0.933]
    DownLoad: CSV

    Table  7   The posteriori distribution of sensitive parameters in Zone Ⅳ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.446 1.460 1.496 0.00094 [1.444, 1.447]
    AM10 1.118 1.127 0.744 0.00472 [1.109, 1.128]
    AM13 1.418 1.441 1.497 0.00151 [1.415, 1.421]
    SL00 1.174 1.188 0.918 0.00304 [1.168, 1.180]
    SL05 0.799 0.777 0.711 0.00164 [0.796, 0.802]
    FL 1.090 1.076 1.297 0.00250 [1.085, 1.095]
    FO 1.033 1.021 1.124 0.00076 [1.031, 1.034]
    FR 0.625 0.595 0.602 0.00198 [0.621, 0.629]
    SP 0.834 0.829 0.828 0.00027 [0.833, 0.834]
    DownLoad: CSV

    Table  8   The posteriori distribution of sensitive parameters in Zone Ⅴ of Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 1.082 1.070 1.333 0.00562 [1.071, 1.093]
    AM10 0.732 0.724 0.705 0.00068 [0.730, 0.732]
    AM13 0.728 0.721 0.708 0.00057 [0.727, 0.729]
    SL00 1.481 1.484 1.492 0.00036 [1.480, 1.481]
    SL05 0.718 0.715 0.708 0.00026 [0.717, 0.718]
    FL 1.880 1.885 1.792 0.00203 [1.876, 1.884]
    FO 0.937 0.935 0.915 0.00046 [0.936, 0.938]
    FR 0.532 0.527 0.502 0.00059 [0.531, 0.533]
    SP 0.738 0.741 0.748 0.00030 [0.738, 0.739]
    DownLoad: CSV

    Table  9   The posteriori distribution of sensitive parameters for the whole Henan Province

    参数 平均值 中值 最大似然值 均方根误差 95%置信区间
    AM00 0.758 0.747 0.756 0.00170 [0.755, 0.761]
    AM10 0.724 0.717 0.709 0.00072 [0.722, 0.725]
    AM13 0.714 0.711 0.702 0.00044 [0.714, 0.715]
    SL00 1.483 1.485 1.499 0.00048 [1.482, 1.484]
    SL05 0.712 0.709 0.701 0.00032 [0.711, 0.712]
    FL 1.855 1.853 1.856 0.00178 [1.851, 1.858]
    FO 0.901 0.899 0.892 0.00046 [0.900, 0.902]
    FR 0.553 0.544 0.538 0.00149 [0.550, 0.556]
    SP 0.896 0.896 0.906 0.00015 [0.895, 0.896]
    DownLoad: CSV
  • [1]
    Edwards D, Hamson M.Guide to Mathermatical Modeling.Boca Raton Florida, US:CRC Press, Inc., 1990.
    [2]
    谢云, James R K.国外作物生长模型发展综述.作物学报, 2002, 28(2): 190-195. DOI: 10.3321/j.issn:0496-3490.2002.02.009

    Xie Y, James R K.A review on the development of crop modeling and its application.Acta Agronomica Sinica, 2002, 28(2): 190-195. DOI: 10.3321/j.issn:0496-3490.2002.02.009
    [3]
    Boote K J, Jones J W, Pickering N B.Potential uses and limitations of crop models.Agronomy Journal, 1996, 88: 704-716. DOI: 10.2134/agronj1996.00021962008800050005x
    [4]
    林忠辉, 莫兴国, 项月琴.作物生长模型研究综述.作物学报, 2003, 29(5): 750-758. DOI: 10.3321/j.issn:0496-3490.2003.05.021

    Lin Z H, Mo X G, Xiang Y Q.Research advances on crop growth models.Acta Agronomica Sinica, 2003, 29(5): 750-758. DOI: 10.3321/j.issn:0496-3490.2003.05.021
    [5]
    高永刚, 顾红, 姬菊枝, 等.近43年来黑龙江气候变化对农作物产量影响的模拟研究.应用气象学报, 2007, 18(4): 532-538. DOI: 10.3969/j.issn.1001-7313.2007.04.014

    Gao Y G, Gu H, Ji J Z, et al.Simulation study of climate change impact on crop yield in Heilongjiang Province from 1961 to 2003.J Appl Meteor Sci, 2007, 18(4): 532-538. DOI: 10.3969/j.issn.1001-7313.2007.04.014
    [6]
    张蕾, 侯英雨, 郑昌玲, 等.作物长势评估指数的设计与应用.应用气象学报, 2019, 30(5): 543-554. DOI: 10.11898/1001-7313.20190503

    Zhang L, Hou Y Y, Zheng C L, et al.The construction and application of assessing index to crop growing condition.J Appl Meteor Sci, 2019, 30(5): 543-554. DOI: 10.11898/1001-7313.20190503
    [7]
    陈怀亮, 李颖, 田宏伟, 等.利用亚像元尺度信息改进区域冬小麦生长的模拟.生态学杂志, 2018, 37(7): 2221-2228.

    Chen H L, Li Y, Tian H W, et al.Improvement of regional-scale winter wheat growth modeling with sub-pixel information.Chinese Journal of Ecology, 2018, 37(7): 2221-2228.
    [8]
    Curnel Y, de Wit A J W, Duveiller G, et al.Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment.Agric For Meteorol, 2011, 151(12): 1843-1855. DOI: 10.1016/j.agrformet.2011.08.002
    [9]
    李颖, 陈怀亮, 田宏伟, 等.同化遥感信息与WheatSM模型的冬小麦估产.生态学杂志, 2019, 38(7): 2258-2264.

    Li Y, Chen H L, Tian H W, et al.Estimation of winter wheat yield based on coupling remote sensing information and WheatSM model.Chinese Journal of Ecology, 2019, 38(7): 2258-2264.
    [10]
    孙琳丽, 马玉平, 景元书, 等.基于约束性分析的数据与作物模型同化方法.应用气象学报, 2013, 24(3): 287-296. DOI: 10.3969/j.issn.1001-7313.2013.03.004

    Sun L L, Ma Y P, Jing Y S, et al.Assimilation of observations with crop growth model based on the constrained analysis of parameters.J Appl Meteor Sci, 2013, 24(3): 287-296. DOI: 10.3969/j.issn.1001-7313.2013.03.004
    [11]
    黄健熙, 黄海, 马鸿元, 等.基于MCMC方法的WOFOST模型参数标定与不确定性分析.农业工程学报, 2018, 34(16): 113-119. DOI: 10.11975/j.issn.1002-6819.2018.16.015

    Huang J X, Huang H, Ma H Y, et al.Markov Chain Monte Carlo based WOFOST model parameters calibration and uncertainty analysis.Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 113-119. DOI: 10.11975/j.issn.1002-6819.2018.16.015
    [12]
    马玉平, 王石立, 王馥棠.作物模拟模型在农业气象业务应用中的研究初探.应用气象学报, 2005, 16(3): 293-303. DOI: 10.3969/j.issn.1001-7313.2005.03.003

    Ma Y P, Wang S L, Wang F T.A preliminary study on the application of crop simulation models in agrometeorological services.J Appl Meteor Sci, 2005, 16(3): 293-303. DOI: 10.3969/j.issn.1001-7313.2005.03.003
    [13]
    刘布春, 王石立, 庄立伟, 等.基于东北玉米区域动力模型的低温冷害预报应用研究.应用气象学报, 2003, 14(5): 616-625. DOI: 10.3969/j.issn.1001-7313.2003.05.012

    Liu B C, Wang S L, Zhuang L W, et al.Study of low temperature damage prediction applications in EN, China based on a scaling up maize dynamic model.J Appl Meteor Sci, 2003, 14(5): 616-625. DOI: 10.3969/j.issn.1001-7313.2003.05.012
    [14]
    秦鹏程, 刘敏, 万素琴, 等.不完整气象资料下基于作物模型的产量预报方法.应用气象学报, 2016, 27(4): 407-416. DOI: 10.11898/1001-7313.20160403

    Qin P C, Liu M, Wan S Q, et al.Methods for yield forecast based on crop model with incomplete weather observations.J Appl Meteor Sci, 2016, 27(4): 407-416. DOI: 10.11898/1001-7313.20160403
    [15]
    许伟, 秦其明, 张添源, 等.SCE标定结合EnKF同化遥感和WOFOST模型模拟冬小麦时序LAI.农业工程学报, 2019, 35(14): 166-173.

    Xu W, Qin Q M, Zhang T Y, et al.Time-series LAI simulation of winter wheat based on WOFOST model calibrated by SCE and assimilated by EnKF.Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 166-173.
    [16]
    张琨.遥感蒸散发模型参数敏感性分析与优化方法研究.兰州:兰州大学, 2018.

    Zhang K.Parameter Sensitivity Analysis and Optimization for Remote Sensing Based Evapotranspiration Model.Lanzhou:Lanzhou University, 2018.
    [17]
    段国辉, 田文仲, 温红霞, 等.近13 a河南省高产冬小麦产量构成及亲本利用演变分析.山西农业科学, 2020, 48(2): 148-153.

    Duan G H, Tian W Z, Wen H X, et al.Analysis on yield components and parent utilization evolution of high yield winter wheat in Henan province in the past 13 years.Journal of Shanxi Agricultural Sciences, 2020, 48(2): 148-153.
    [18]
    Hijmans R J, Guiking-Lens I M, Van Diepen C A.WOFOST 6.0:User's Guide for the WOFOST 6.0 Crop Growth Simulation Model.Wageningen:DLO Winand Staring Centre, 1994.
    [19]
    兴安, 卓志清, 赵云泽, 等.基于EFAST的不同生产水平下WOFOST模型参数敏感性分析.农业机械学报, 2020, 51(2): 161-171.

    Xing A, Zhuo Z Q, Zhao Y Z, et al.Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method.Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 161-171.
    [20]
    张弘, 刘伟昌, 李树岩.WOFOST模型对河南省冬小麦模拟的适用性分析.气象与环境科学, 2019, 42(1): 34-40.

    Zhang H, Liu W C, Li S Y.Applicability analysis of WOFOST model for winter wheat in Henan.Meteorological and Environmental Sciences, 2019, 42(1): 34-40.
    [21]
    邱美娟, 宋迎波, 王建林, 等.山东省冬小麦产量动态集成预报方法.应用气象学报, 2016, 27(2): 191-200. DOI: 10.11898/1001-7313.20160207

    Qiu M J, Song Y B, Wang J L, et al.Integrated technology of yield dynamic prediction of winter wheat in Shandong province.J Appl Meteor Sci, 2016, 27(2): 191-200. DOI: 10.11898/1001-7313.20160207
    [22]
    Allen R G, Pereira L S, Raes D, et al.Crop Evapotranspiration:FAO Irrigation and Drainage Paper No.56.FAO, Rome, Italy, 1998.
    [23]
    张文君, 顾行发, 陈良富, 等.基于均值-标准差的K均值初始聚类中心选取算法.遥感学报, 2006, 10(5): 715-721.

    Zhang W J, Gu X F, Chen L F, et al.An algorithm for initilizing of K-Means clustering based on Mean-standard deviation.Journal of Remote Sensing, 2006, 10(5): 715-721.
    [24]
    Sobol I M.Sensitivity estimates for nonlinear mathematical models.Math Model Comput Exp, 1993, 1(4): 407-414.
    [25]
    Sobol I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.Mathematics and computers in simulation, 2001, 55(1-3): 271-280. DOI: 10.1016/S0378-4754(00)00270-6
    [26]
    Tang Y, Reed P, Wagener T, et al.Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation.Hydrology and Earth System Sciences, 2007, 3(6): 793-817.
    [27]
    Nossent J, Elsen P, Bauwens W.Sobol'sensitivity analysis of a complex environmental model.Environmental Modelling & Software, 2011, 26: 1515-1525.
    [28]
    符天凡.基于聚类的随机梯度马尔科夫链蒙特卡洛算法.上海:上海交通大学, 2018.

    Fu T F.Clustering-based Stochastic Gradient Markov Chain Monte Carlo.Shanghai:Shanghai Jiao Tong University, 2018.
    [29]
    Hasting W.Monte Carlo sampling methods using Markov Chains and their applications.Biometrika, 1970, 57: 97-109. DOI: 10.1093/biomet/57.1.97
    [30]
    孙玫.MCMC算法及其应用.应用数学进展, 2018, 7(12): 1626-1637.

    Sun M.MCMC algorithm and its application.Advances in Applied Mathematics, 2018, 7(12): 1626-1637.
    [31]
    Braak C J.A Markov Chain Monte Carlo version of the genetic algorithm differential evolution.Stats and Computing, 2006, 16: 239-249. DOI: 10.1007/s11222-006-8769-1
    [32]
    周广胜, 何奇瑾, 汲玉河.适应气候变化的国际行动和农业措施研究进展.应用气象学报, 2016, 27(5): 527-533. DOI: 10.11898/1001-7313.20160502

    Zhou G S, He Q J, Ji Y H.Advances in the international action and agricultural measurements of adaptation to climate change.J Appl Meteor Sci, 2016, 27(5): 527-533. DOI: 10.11898/1001-7313.20160502
    [33]
    郭建平.气候变化对中国农业生产的影响研究进展.应用气象学报, 2015, 26(1): 1-11. DOI: 10.11898/1001-7313.20150101

    Guo J P.Advances in impacts of climate change on agricultural production in China.J Appl Meteor Sci, 2015, 26(1): 1-11. DOI: 10.11898/1001-7313.20150101
  • Related Articles

    [1]Sun Guanghui, Duan Juqi, Li Junru, Liao Yaoming. Agro-climatic Zoning of Oiltea Camellia in China Based on Climate-land Integrated Impacts[J]. Journal of Applied Meteorological Science, 2024, 35(4): 444-455. DOI: 10.11898/1001-7313.20240405
    [2]Tian Fuyou, Zheng Yongguang, Zhang Tao, Mao Dongyan, Tang Wenyuan, Zhou Qingliang, Sun Jianhua, Zhao Sixiong. Sensitivity Analysis of Short-duration Heavy Rainfall Related Diagnostic Parameters with Point-area Verification[J]. Journal of Applied Meteorological Science, 2015, 26(4): 385-396. DOI: 10.11898/1001-7313.20150401
    [3]Lu Xue, Gao Shanhong, Rao Lijuan, Wang Yongming. Sensitivity Study of WRF Parameterization Schemes for the Spring Sea Fog in the Yellow Sea[J]. Journal of Applied Meteorological Science, 2014, 25(3): 312-320.
    [4]Yang Zhifeng, Zhang Xiaoye, Che Huizheng, Zhang Xiaochun, Hu Xiuqing, Zhang Lijun. An Introductory Study on the Calibration of CE318 Sunphotometer[J]. Journal of Applied Meteorological Science, 2008, 19(3): 297-306.
    [5]Li Yachun, Wu Jingang, Xie Zhiqing, Jiao Shengming, Liu Cong. Turbulent Characteristic Parameter of Different Strong Wind Samples[J]. Journal of Applied Meteorological Science, 2008, 19(1): 28-34.
    [6]Zhu Lekun, Zheng Lichun. Uncertainty Analysis of Various Sensors Calibration Results for AWS[J]. Journal of Applied Meteorological Science, 2006, 17(5): 635-642.
    [7]Wang Guoqing, Wang Yunzhang, Kang Lingling. ANALYSIS ON THE SENSITIVITY OF RUNOFF IN YELLOW RIVER TO CLIMATE CHANGE[J]. Journal of Applied Meteorological Science, 2002, 13(1): 117-121.
    [8]Ma Gang, Fang Zongyi, Zhang Fengying. THE IMPACT OF CLOUD PARAMETERS ON THE SIMULATED ERRORS IN RTTOV5[J]. Journal of Applied Meteorological Science, 2001, 12(4): 385-392.
    [9]Bian Huisheng, Yan Pen, Zhu Cuijuan, Li Xingsheng. The Parameter Study of a High-order Turbulence Model[J]. Journal of Applied Meteorological Science, 1995, 6(2): 192-198.
    [10]Fang Zongyi, Liu Yujie, Zhu Xiaoxiang. A Cloud Parameters Retrieval Algorithm and Cloud Characteristic Analysis over East Asia in 1991[J]. Journal of Applied Meteorological Science, 1994, 5(2): 135-142.
  • Cited by

    Periodical cited type(14)

    1. 关皓月,李梦瑶,李国强,张建涛,高桐梅,陈先冠,张文宇,吴金芝. 芝麻发育期模拟模型参数敏感性分析与优化. 河南农业科学. 2024(09): 159-170 .
    2. 杨景燕. 基于GIS的气候资源评价及区划研究——以新疆阿克苏苹果为例. 中南农业科技. 2024(10): 103-106 .
    3. 吴清滢,谭忠昕,余强毅,汪彩华,宋茜,陆苗,吴文斌. 作物遥感估产方法对比及一致性评价. 中国农业信息. 2024(06): 27-40 .
    4. 万青松,罗晓姣. 基于无监督过滤式指标选择的冬小麦种植区域尺度管理分区算法. 湖北农业科学. 2023(04): 185-189 .
    5. 魏瑞江,郑昌玲,王鑫,申双和. WOFOST作物生长模型在国内应用研究进展. 气象科学. 2023(03): 402-411 .
    6. 刘小飞,王景雷,刘祖贵,宋妮,方文松. 基于日天气预报数据估算小麦生长季参考作物蒸散量. 中国农业气象. 2022(03): 194-203 .
    7. 高浚,周保平,王昱,王君,于晗. 基于EFAST的DSSAT模型对南疆地区棉花参数敏感性分析及适用性评价. 江苏农业科学. 2022(05): 185-191 .
    8. 王君. Cotton2k模型在南疆地区棉花虚拟生长中的应用. 农业科技与信息. 2022(10): 126-128 .
    9. 高浚,周保平,王昱,于晗,王君. 不同参数取值范围下CROPGRO-cotton模型全局敏感性和不确定性分析. 江苏农业科学. 2022(09): 195-202 .
    10. 邓晓垒,董莉霞,李广,聂志刚,胥建杰,王钧,逯玉兰. 西北春麦区Apsim-Wheat模型参数全局敏感性分析. 麦类作物学报. 2022(06): 746-754 .
    11. 郑昌玲,张蕾,侯英雨,宋迎波. 基于WOFOST模型的冬小麦产量动态预报方法. 干旱地区农业研究. 2022(06): 242-250+267 .
    12. 孙爽,王春乙,宋艳玲,杨晓光. 我国北方一作区马铃薯高产稳产区分布特征. 应用气象学报. 2021(04): 385-396 . 本站查看
    13. 柏秦凤,王景红,李化龙,张维敏,郭建平,张焘,贺晨昕. 美味系猕猴桃越冬冻害指标. 应用气象学报. 2021(04): 504-512 . 本站查看
    14. 唐俊贤,王培娟,俄有浩,马玉平,邬定荣,霍治国. 中国大陆茶树种植气候适宜性区划. 应用气象学报. 2021(04): 397-407 . 本站查看

    Other cited types(6)

Catalog

    Figures(3)  /  Tables(9)

    Article views2285 PDF downloads151 Cited by: 20
    • Received : 2020-09-29
    • Accepted : 2020-11-01
    • Published : 2021-01-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return