生育阶段 | Ⅰ区 | Ⅱ区 | Ⅲ区 | Ⅳ区 | Ⅴ区 |
播种至出苗 | 1170 | 1180 | 1100 | 1150 | 1250 |
出苗至开花 | 600 | 620 | 610 | 600 | 610 |
开花至成熟 | 110 | 120 | 120 | 130 | 120 |
Citation: | Li Ying, Zhao Guoqiang, Chen Huailiang, et al. WOFOST model parameter calibration based on agro-climatic division of winter wheat. J Appl Meteor Sci, 2021, 32(1): 38-51. DOI: 10.11898/1001-7313.20210104. |
Table 1 Accumulated temperature parameters of winter wheat in different zones(unit:℃·d)
生育阶段 | Ⅰ区 | Ⅱ区 | Ⅲ区 | Ⅳ区 | Ⅴ区 |
播种至出苗 | 1170 | 1180 | 1100 | 1150 | 1250 |
出苗至开花 | 600 | 620 | 610 | 600 | 610 |
开花至成熟 | 110 | 120 | 120 | 130 | 120 |
Table 2 The proportion of changes of parameters to be analyzed around the default value
参数 | 定义 | 最小比例 | 最大比例 |
AM00 | 发育期为0时CO2最大同化速率 | 0.7 | 1.5 |
AM10 | 发育期为1时CO2最大同化速率 | 0.7 | 1.5 |
AM13 | 发育期为1.3时CO2最大同化速率 | 0.7 | 1.5 |
AM20 | 发育期为2时CO2最大同化速率 | 0.7 | 1.5 |
SL00 | 发育期为0时比叶面积 | 0.7 | 1.5 |
SL05 | 发育期为0.5时比叶面积 | 0.7 | 1.5 |
SL20 | 发育期为2时比叶面积 | 0.7 | 1.5 |
FL | 总物质分配到叶片的比例 | 0.5 | 2.0 |
FO | 总物质分配到储存器官的比例 | 0.8 | 1.2 |
FR | 总物质分配到根的比例 | 0.5 | 2.0 |
SP | 35℃时叶片的生命周期 | 0.7 | 1.5 |
TB | 出苗最低温度 | 0.5 | 1.5 |
TD | 初始总干物质重量 | 0.9 | 1.3 |
TE | 出苗最高有效温度 | 0.9 | 1.3 |
TM00 | 日平均温度为0℃时CO2最大同化速率减小因子 | 0.7 | 1.5 |
TM10 | 日平均温度为10℃时CO2最大同化速率减小因子 | 0.7 | 1.3 |
TM15 | 日平均温度为15℃时CO2最大同化速率减小因子 | 0.7 | 1.5 |
TM25 | 日平均温度为25℃时CO2最大同化速率减小因子 | 0.7 | 1.5 |
TM35 | 日平均温度为35℃时CO2最大同化速率减小因子 | 0.7 | 1.5 |
RD | 根的相对死亡速率 | 0.9 | 1.0 |
RG | 叶面积指数最大日增量 | 0.9 | 1.3 |
Table 3 Modeling data and verification data used for parameter calibration
研究区 | 优化数据 | 验证数据 | |||
年份 | 站点 | 年份 | 站点 | ||
Ⅰ区 | 2013 | 林州 | |||
2014 | 汤阴 | ||||
2015 | 安阳 | 2018—2019 | 汤阴 | ||
2016 | 濮阳 | ||||
2017 | 范县 | ||||
Ⅱ区 | 2013 | 郑州 | |||
2014 | 商丘 | ||||
2015 | 伊川 | 2018—2019 | 郑州 | ||
2016 | 济源 | ||||
2017 | 郑州 | ||||
Ⅲ区 | 2013 | 许昌 | |||
2014 | 许昌 | ||||
2015 | 黄泛区 | 2018—2019 | 黄泛区 | ||
2016 | 驻马店 | ||||
2017 | 南阳 | ||||
Ⅳ区 | 2013 | 信阳 | |||
2014 | 正阳 | ||||
2015 | 新野 | 2018—2019 | 潢川 | ||
2016 | 潢川 | ||||
2017 | 固始 | ||||
Ⅴ区 | 2013 | 卢氏 | |||
2014 | 三门峡 | ||||
2015 | 三门峡 | 2018—2019 | 卢氏 | ||
2016 | 卢氏 | ||||
2017 | 卢氏 |
Table 4 The posteriori distribution of sensitive parameters in Zone Ⅰ of Henan Province
参数 | 平均值 | 中值 | 最大似然值 | 均方根误差 | 95%置信区间 |
AM00 | 1.369 | 1.414 | 1.470 | 0.00396 | [1.361, 1.377] |
AM10 | 1.351 | 1.374 | 1.426 | 0.00301 | [1.345, 1.357] |
AM13 | 0.729 | 0.722 | 0.704 | 0.00070 | [0.728, 0.731] |
SL00 | 1.443 | 1.455 | 1.500 | 0.00130 | [1.440, 1.445] |
SL05 | 0.774 | 0.770 | 0.707 | 0.00127 | [0.771, 0.776] |
FL | 1.904 | 1.932 | 1.994 | 0.00220 | [1.900, 1.909] |
FO | 0.857 | 0.856 | 0.860 | 0.00023 | [0.856, 0.857] |
FR | 1.423 | 1.429 | 1.487 | 0.00131 | [1.421, 1.426] |
SP | 0.831 | 0.829 | 0.826 | 0.00026 | [0.831, 0.832] |
Table 5 The posteriori distribution of sensitive parameters in Zone Ⅱ of Henan Province
参数 | 平均值 | 中值 | 最大似然值 | 均方根误差 | 95%置信区间 |
AM00 | 0.761 | 0.750 | 0.704 | 0.00176 | [0.757, 0.764] |
AM10 | 1.397 | 1.410 | 1.412 | 0.00274 | [1.392, 1.403] |
AM13 | 0.793 | 0.785 | 0.760 | 0.00235 | [0.788, 0.798] |
SL00 | 1.350 | 1.361 | 1.458 | 0.00385 | [1.342, 1.357] |
SL05 | 0.772 | 0.759 | 0.737 | 0.00195 | [0.768, 0.775] |
FL | 1.823 | 1.848 | 1.973 | 0.00496 | [1.813, 1.833] |
FO | 0.921 | 0.920 | 0.901 | 0.00055 | [0.919, 0.922] |
FR | 0.946 | 0.964 | 1.112 | 0.00573 | [0.934, 0.957] |
SP | 0.822 | 0.824 | 0.824 | 0.00034 | [0.822, 0.823] |
Table 6 The posteriori distribution of sensitive parameters in Zone Ⅲ of Henan Province
参数 | 平均值 | 中值 | 最大似然值 | 均方根误差 | 95%置信区间 |
AM00 | 0.715 | 0.711 | 0.702 | 0.00040 | [0.714, 0.716] |
AM10 | 0.891 | 0.872 | 0.869 | 0.00319 | [0.885, 0.897] |
AM13 | 0.738 | 0.730 | 0.700 | 0.00089 | [0.737, 0.740] |
SL00 | 1.352 | 1.376 | 1.498 | 0.00296 | [1.346, 1.358] |
SL05 | 1.082 | 1.067 | 1.144 | 0.00383 | [1.075, 1.090] |
FL | 1.326 | 1.334 | 1.215 | 0.00426 | [1.317, 1.334] |
FO | 0.809 | 0.807 | 0.802 | 0.00023 | [0.809, 0.810] |
FR | 0.790 | 0.787 | 0.794 | 0.00397 | [0.782, 0.798] |
SP | 0.932 | 0.938 | 0.940 | 0.00042 | [0.932, 0.933] |
Table 7 The posteriori distribution of sensitive parameters in Zone Ⅳ of Henan Province
参数 | 平均值 | 中值 | 最大似然值 | 均方根误差 | 95%置信区间 |
AM00 | 1.446 | 1.460 | 1.496 | 0.00094 | [1.444, 1.447] |
AM10 | 1.118 | 1.127 | 0.744 | 0.00472 | [1.109, 1.128] |
AM13 | 1.418 | 1.441 | 1.497 | 0.00151 | [1.415, 1.421] |
SL00 | 1.174 | 1.188 | 0.918 | 0.00304 | [1.168, 1.180] |
SL05 | 0.799 | 0.777 | 0.711 | 0.00164 | [0.796, 0.802] |
FL | 1.090 | 1.076 | 1.297 | 0.00250 | [1.085, 1.095] |
FO | 1.033 | 1.021 | 1.124 | 0.00076 | [1.031, 1.034] |
FR | 0.625 | 0.595 | 0.602 | 0.00198 | [0.621, 0.629] |
SP | 0.834 | 0.829 | 0.828 | 0.00027 | [0.833, 0.834] |
Table 8 The posteriori distribution of sensitive parameters in Zone Ⅴ of Henan Province
参数 | 平均值 | 中值 | 最大似然值 | 均方根误差 | 95%置信区间 |
AM00 | 1.082 | 1.070 | 1.333 | 0.00562 | [1.071, 1.093] |
AM10 | 0.732 | 0.724 | 0.705 | 0.00068 | [0.730, 0.732] |
AM13 | 0.728 | 0.721 | 0.708 | 0.00057 | [0.727, 0.729] |
SL00 | 1.481 | 1.484 | 1.492 | 0.00036 | [1.480, 1.481] |
SL05 | 0.718 | 0.715 | 0.708 | 0.00026 | [0.717, 0.718] |
FL | 1.880 | 1.885 | 1.792 | 0.00203 | [1.876, 1.884] |
FO | 0.937 | 0.935 | 0.915 | 0.00046 | [0.936, 0.938] |
FR | 0.532 | 0.527 | 0.502 | 0.00059 | [0.531, 0.533] |
SP | 0.738 | 0.741 | 0.748 | 0.00030 | [0.738, 0.739] |
Table 9 The posteriori distribution of sensitive parameters for the whole Henan Province
参数 | 平均值 | 中值 | 最大似然值 | 均方根误差 | 95%置信区间 |
AM00 | 0.758 | 0.747 | 0.756 | 0.00170 | [0.755, 0.761] |
AM10 | 0.724 | 0.717 | 0.709 | 0.00072 | [0.722, 0.725] |
AM13 | 0.714 | 0.711 | 0.702 | 0.00044 | [0.714, 0.715] |
SL00 | 1.483 | 1.485 | 1.499 | 0.00048 | [1.482, 1.484] |
SL05 | 0.712 | 0.709 | 0.701 | 0.00032 | [0.711, 0.712] |
FL | 1.855 | 1.853 | 1.856 | 0.00178 | [1.851, 1.858] |
FO | 0.901 | 0.899 | 0.892 | 0.00046 | [0.900, 0.902] |
FR | 0.553 | 0.544 | 0.538 | 0.00149 | [0.550, 0.556] |
SP | 0.896 | 0.896 | 0.906 | 0.00015 | [0.895, 0.896] |
[1] |
Edwards D, Hamson M.Guide to Mathermatical Modeling.Boca Raton Florida, US:CRC Press, Inc., 1990.
|
[2] |
Xie Y, James R K.A review on the development of crop modeling and its application.Acta Agronomica Sinica, 2002, 28(2): 190-195. doi: 10.3321/j.issn:0496-3490.2002.02.009
|
[3] |
Boote K J, Jones J W, Pickering N B.Potential uses and limitations of crop models.Agronomy Journal, 1996, 88: 704-716. doi: 10.2134/agronj1996.00021962008800050005x
|
[4] |
Lin Z H, Mo X G, Xiang Y Q.Research advances on crop growth models.Acta Agronomica Sinica, 2003, 29(5): 750-758. doi: 10.3321/j.issn:0496-3490.2003.05.021
|
[5] |
Gao Y G, Gu H, Ji J Z, et al.Simulation study of climate change impact on crop yield in Heilongjiang Province from 1961 to 2003.J Appl Meteor Sci, 2007, 18(4): 532-538. doi: 10.3969/j.issn.1001-7313.2007.04.014
|
[6] |
Zhang L, Hou Y Y, Zheng C L, et al.The construction and application of assessing index to crop growing condition.J Appl Meteor Sci, 2019, 30(5): 543-554. doi: 10.11898/1001-7313.20190503
|
[7] |
Chen H L, Li Y, Tian H W, et al.Improvement of regional-scale winter wheat growth modeling with sub-pixel information.Chinese Journal of Ecology, 2018, 37(7): 2221-2228.
|
[8] |
Curnel Y, de Wit A J W, Duveiller G, et al.Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment.Agric For Meteorol, 2011, 151(12): 1843-1855. doi: 10.1016/j.agrformet.2011.08.002
|
[9] |
Li Y, Chen H L, Tian H W, et al.Estimation of winter wheat yield based on coupling remote sensing information and WheatSM model.Chinese Journal of Ecology, 2019, 38(7): 2258-2264.
|
[10] |
Sun L L, Ma Y P, Jing Y S, et al.Assimilation of observations with crop growth model based on the constrained analysis of parameters.J Appl Meteor Sci, 2013, 24(3): 287-296. doi: 10.3969/j.issn.1001-7313.2013.03.004
|
[11] |
Huang J X, Huang H, Ma H Y, et al.Markov Chain Monte Carlo based WOFOST model parameters calibration and uncertainty analysis.Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 113-119. doi: 10.11975/j.issn.1002-6819.2018.16.015
|
[12] |
Ma Y P, Wang S L, Wang F T.A preliminary study on the application of crop simulation models in agrometeorological services.J Appl Meteor Sci, 2005, 16(3): 293-303. doi: 10.3969/j.issn.1001-7313.2005.03.003
|
[13] |
Liu B C, Wang S L, Zhuang L W, et al.Study of low temperature damage prediction applications in EN, China based on a scaling up maize dynamic model.J Appl Meteor Sci, 2003, 14(5): 616-625. doi: 10.3969/j.issn.1001-7313.2003.05.012
|
[14] |
Qin P C, Liu M, Wan S Q, et al.Methods for yield forecast based on crop model with incomplete weather observations.J Appl Meteor Sci, 2016, 27(4): 407-416. doi: 10.11898/1001-7313.20160403
|
[15] |
Xu W, Qin Q M, Zhang T Y, et al.Time-series LAI simulation of winter wheat based on WOFOST model calibrated by SCE and assimilated by EnKF.Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 166-173.
|
[16] |
Zhang K.Parameter Sensitivity Analysis and Optimization for Remote Sensing Based Evapotranspiration Model.Lanzhou:Lanzhou University, 2018.
|
[17] |
Duan G H, Tian W Z, Wen H X, et al.Analysis on yield components and parent utilization evolution of high yield winter wheat in Henan province in the past 13 years.Journal of Shanxi Agricultural Sciences, 2020, 48(2): 148-153.
|
[18] |
Hijmans R J, Guiking-Lens I M, Van Diepen C A.WOFOST 6.0:User's Guide for the WOFOST 6.0 Crop Growth Simulation Model.Wageningen:DLO Winand Staring Centre, 1994.
|
[19] |
Xing A, Zhuo Z Q, Zhao Y Z, et al.Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method.Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 161-171.
|
[20] |
Zhang H, Liu W C, Li S Y.Applicability analysis of WOFOST model for winter wheat in Henan.Meteorological and Environmental Sciences, 2019, 42(1): 34-40.
|
[21] |
Qiu M J, Song Y B, Wang J L, et al.Integrated technology of yield dynamic prediction of winter wheat in Shandong province.J Appl Meteor Sci, 2016, 27(2): 191-200. doi: 10.11898/1001-7313.20160207
|
[22] |
Allen R G, Pereira L S, Raes D, et al.Crop Evapotranspiration:FAO Irrigation and Drainage Paper No.56.FAO, Rome, Italy, 1998.
|
[23] |
Zhang W J, Gu X F, Chen L F, et al.An algorithm for initilizing of K-Means clustering based on Mean-standard deviation.Journal of Remote Sensing, 2006, 10(5): 715-721.
|
[24] |
Sobol I M.Sensitivity estimates for nonlinear mathematical models.Math Model Comput Exp, 1993, 1(4): 407-414.
|
[25] |
Sobol I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.Mathematics and computers in simulation, 2001, 55(1-3): 271-280. doi: 10.1016/S0378-4754(00)00270-6
|
[26] |
Tang Y, Reed P, Wagener T, et al.Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation.Hydrology and Earth System Sciences, 2007, 3(6): 793-817.
|
[27] |
Nossent J, Elsen P, Bauwens W.Sobol'sensitivity analysis of a complex environmental model.Environmental Modelling & Software, 2011, 26: 1515-1525.
|
[28] |
Fu T F.Clustering-based Stochastic Gradient Markov Chain Monte Carlo.Shanghai:Shanghai Jiao Tong University, 2018.
|
[29] |
Hasting W.Monte Carlo sampling methods using Markov Chains and their applications.Biometrika, 1970, 57: 97-109. doi: 10.1093/biomet/57.1.97
|
[30] |
Sun M.MCMC algorithm and its application.Advances in Applied Mathematics, 2018, 7(12): 1626-1637.
|
[31] |
Braak C J.A Markov Chain Monte Carlo version of the genetic algorithm differential evolution.Stats and Computing, 2006, 16: 239-249. doi: 10.1007/s11222-006-8769-1
|
[32] |
Zhou G S, He Q J, Ji Y H.Advances in the international action and agricultural measurements of adaptation to climate change.J Appl Meteor Sci, 2016, 27(5): 527-533. doi: 10.11898/1001-7313.20160502
|
[33] |
Guo J P.Advances in impacts of climate change on agricultural production in China.J Appl Meteor Sci, 2015, 26(1): 1-11. doi: 10.11898/1001-7313.20150101
|