Cai Fu, Mi Na, Ming Huiqing, et al. Effects of improving evapotranspiration parameterization scheme on WOFOST model performance in simulating maize drought stress process. J Appl Meteor Sci, 2021, 32(1): 52-64. DOI:  10.11898/1001-7313.20210105.
Citation: Cai Fu, Mi Na, Ming Huiqing, et al. Effects of improving evapotranspiration parameterization scheme on WOFOST model performance in simulating maize drought stress process. J Appl Meteor Sci, 2021, 32(1): 52-64. DOI:  10.11898/1001-7313.20210105.

Effects of Improving Evapotranspiration Parameterization Scheme on WOFOST Model Performance in Simulating Maize Drought Stress Process

DOI: 10.11898/1001-7313.20210105
  • Received Date: 2020-09-28
  • Rev Recd Date: 2020-10-28
  • Publish Date: 2021-01-31
  • To solve the problem on poor performance of crop growth model in simulating crop growth process under water stress, three schemes including improving evapotranspiration parameterization scheme with Penman-Monteith method, building dynamic crop coefficient (Kc) and considering simultaneously two above-mentioned solutions which are respectively named as the PM, CC and PMCC schemes are used to improve WOFOST model. Their effects on model performance in simulating maize drought stress process are evaluated based on experiments of different sowing dates on 20 April, 30 April and 10 May conducted in Jinzhou in the year with normal precipitation (2012) and the dry year (2015 and 2018). The results show that compared with the default model, PM scheme plays a role in increasing potential evapotranspiration and transpiration rate in 2012, while CC scheme decreases (increases) transpiration rate as Kc is larger (smaller) than the model default value 1, respectively. Three schemes hardly affect simulation accuracies of soil moisture in rooted zone, total above ground production, leaf area index (ILA) and yield. In 2015, PM scheme makes ILA, total above ground production yield and soil moisture dramatically smaller than those with the default model after the jointing stage of maize. It also increases (decreases) transpiration rate before (after) the whorl stage of maize. After improving the model with CC scheme, ILA, total above ground production, yield and soil moisture are slightly larger than those simulated by the default model after the whorl stage, and the simulated transpiration rates are smaller (larger) than those simulated by the default model before (after) the whorl stage of maize. Nevertheless, the above-mentioned variables simulated by the improved model with PMCC scheme range between those simulated by the model with PM and CC schemes, and ILA, total above ground production and yield are obviously closer to the observations. Specifically, the mean increments of simulation accuracies for all growth periods in three sowing dates are 6%, 21% and 3% for ILA and 8%, 8% and 14% for total above ground production, respectively. The simulation accuracies of yield for three sowing dates increase by 66%, 63% and 66%, respectively. In 2018, the simulation accuracies of total above ground production and yield for the sowing dates on 20 April and 30 April are obviously improved by PMCC scheme, and increase by 5%, 1% in total above ground production as well as 32%, 5% in yield. Therefore, the model performance with PMCC scheme in simulating maize growth is significantly improved under water stress.
  • Fig. 1  Relative soil moisture in maize growth periods

    Fig. 2  Comparisons of observed and simulated total above ground productions

    Fig. 3  Daily maximum and minimum temperature during the key growth periods of maize

    Fig. 4  Comparisons of observed and simulated leaf area indices

    Fig. 5  Comparisons of observed and simulated yields

    Fig. 6  Comparisons of observed and simulated soil moistures for sowing date on 30 Apr

    Fig. 7  Simulated transpiration rates of different schemes for sowing date on 30 Apr

    Fig. 8  Simulated crop coefficients based on CC and PMCC schemes for sowing date on 30 Apr

    Table  1  Occurrence dates and days of year in maize growth periods for different sowing date experiments

    年份 生育期 04-20播种 04-30播种 05-10播种
    日期 日序 日期 日序 日期 日序
    2012 三叶 05-12 132 05-15 135 05-23 143
    七叶 05-25 145 05-29 149 06-02 153
    拔节 06-12 163 06-15 166 06-19 170
    抽雄 07-07 188 07-10 191 07-16 197
    乳熟 08-14 226 08-20 232 08-24 236
    成熟 09-18 261 09-23 266 09-25 268
    2015 三叶 05-03 123 05-15 135 05-23 143
    七叶 05-24 144 05-28 148 06-03 154
    拔节 06-09 160 06-14 165 06-16 167
    抽雄 07-11 192 07-14 195 07-17 198
    乳熟 08-17 229 08-24 236 08-25 237
    成熟 09-17 260 09-24 267 09-26 269
    2018 三叶 05-05 125 05-12 132 05-22 142
    七叶 05-18 138 05-24 144 06-05 156
    拔节 06-11 162 06-12 163 06-17 168
    抽雄 07-11 192 07-13 194 07-15 196
    乳熟 08-17 229 08-20 232 08-23 235
    成熟 09-22 265 09-25 268 09-29 272
    DownLoad: Download CSV

    Table  2  Dry weights of different components of maize ear and ratios of kernel to ear in 2014

    播期 穗轴重/g 籽粒重/g 果穗重/g 籽粒果穗比
    04-20 36.2 224.9 261.1 0.861
    04-30 34.7 197.0 231.8 0.850
    05-10 35.4 209.7 245.1 0.856
    平均 35.5 210.6 246.0 0.856
    DownLoad: Download CSV
  • [1]
    Lobell D B, Roberts M J, Schlenker W, et al.Greater sensitivity to drought accompanies maize yield increase in the US Midwest.Science, 2014, 344: 516-519. doi:  10.1126/science.1251423
    [2]
    Myers S S, Smith M R, Guth S, et al.Climate change and global food systems:Potential impacts on food security and undernutrition.Annu Rev Publ Health, 2017, 38: 259-277. doi:  10.1146/annurev-publhealth-031816-044356
    [3]
    Wang P J, Ma Y P, Huo Z G, et al.Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat.J Appl Meteor Sci, 2020, 31(3): 267-279. doi:  10.11898/1001-7313.20200302
    [4]
    Shi Z, Liang Z Z, Yang Y Y, et al.Status and prospect of agricultural remote sensing.Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(2): 247-260.
    [5]
    Li Y B, Song H, Zhou L, et al.Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field.Agr Water Manage, 2019, 211: 190-201. doi:  10.1016/j.agwat.2018.09.050
    [6]
    Guo J P.Research progression agricultural meteorological disaster monitoring and forecasting.J Appl Meteor Sci, 2016, 27(5): 620-630. doi:  10.11898/1001-7313.20160510
    [7]
    FAO.Faostat (2019-03-03)[2020-08-10].http://www.fao.org/faostat/en/#data.
    [8]
    Song Y L, Wang J L, Tian J F, et al.The spring maize drought index in northeast China based on meteorological drought index.J Appl Meteor Sci, 2019, 30(1): 25-34. doi:  10.11898/1001-7313.20190103
    [9]
    Cheng Z Q, Meng J H, Wang Y M.Improving spring maize yield estimation at field scale by assimilating time-series hj-1 CCD data into the WOFOST model using a new method with fast algorithms.Remote Sens, 2016, 8(4): 303. doi:  10.3390/rs8040303
    [10]
    Zhao J, Yang X G, Liu Z J, et al.The possible effects of global warming on cropping systems in China.X:The possible impacts of climate change on climatic suitability of spring maize in the three provinces of Northeast China.Sciencia Agricultura Sinica, 2014, 47(16): 3143-3156. doi:  10.3864/j.issn.0578-1752.2014.16.003
    [11]
    Mi N, Cai F, Zhang Y S, et al.Effect of continuous drought during different growth stages on maize and its quantitative relationship with yield loss.Chinese Journal of Applied Ecology, 2017, 28(5): 1563-1570.
    [12]
    Cai F, Ming H Q, Xie Y B, et al.Effect of drought stress on root growth during the key growth periods of spring maize in Northeast China.Journal of Meteorology and Environment, 2018, 34(2): 75-81. doi:  10.3969/j.issn.1673-503X.2018.02.010
    [13]
    Cai F, Mi N, Ji R P, et al.Effects of drought stress and subsequent rewatering on major physiological parameters of spring maize during the key growth periods.Chinese Journal of Applied Ecology, 2017, 28(11): 3643-3652.
    [14]
    Song H, Li Y B, Zhou L, et al.Maize leaf functional responses to drought episode and rewatering.Agr Forest Meteorol, 2018, 249: 57-70. doi:  10.1016/j.agrformet.2017.11.023
    [15]
    Hao W P.Influence of Water Stress and Rewatering on Maize WUE and Compensation Effects.Beijing:Chinese Academy of Agricultural Sciences, 2013.
    [16]
    Ahuja I, De Vos R C, Bones A M, et al.Plant molecular stress responses face climate change.Trends Plant Sci, 2010, 15(12): 664-674. doi:  10.1016/j.tplants.2010.08.002
    [17]
    Xu Z Z, Zhou G S, Shimizu H.Plant responses to drought and rewatering.Plant Signal Behav, 2010, 5(6): 649-654. doi:  10.4161/psb.5.6.11398
    [18]
    Ma Y P, Huo Z G, Wang P J, et al.The construction and application of Chinese agrometeorological model (CAMM1.0).J Appl Meteor Sci, 2019, 30(5): 528-542. doi:  10.11898/1001-7313.20190502
    [19]
    Hou Y Y, Zhang Y, Wu M X, et al.Advances of modern agrometeorological service and technology in China.J Appl Meteor Sci, 2018, 29(6): 641-656. doi:  10.11898/1001-7313.20180601
    [20]
    Chen S N, Zhao Y X, Shen S H, et al.Study on maize yield estimation and accuracy assessment based on PyWOFOST crop model in Northeast China.Sciencia Agricultura Sinica, 2013, 46(14): 2880-2893. doi:  10.3864/j.issn.0578-1752.2013.14.004
    [21]
    Sun L L, Ma Y P, Jing Y S, et al.Assimilation of observations with crop growth model based on the constrained analysis of parameters.J Appl Meteor Sci, 2013, 24(3): 287-296. doi:  10.3969/j.issn.1001-7313.2013.03.004
    [22]
    Liu W, Hou Y Y, Wu M X, et al.Validation and adaptability evaluation of WOFOST model in spring maize area of northeast.Meteorological and Environmental Sciences, 2017, 40(3): 7-13.
    [23]
    Hijmans R J, Guiking Lens I M, Van Diepen C A.User Guide for the WOFOST 6.0, Crop Growth Simulation Model.Technical Document 12//DLO Winand Staing Centre, Wageningen, 1994.
    [24]
    Jones J W, Keating B A, Porter C H.Approaches to modular model development.Agr Syst, 2001, 70: 421-443. doi:  10.1016/S0308-521X(01)00054-3
    [25]
    Jones J W, Hoogenboom G, Porter C H, et al.The DSSAT cropping system model.Eur J Agron, 2003, 18: 235-265. doi:  10.1016/S1161-0301(02)00107-7
    [26]
    Keating B A, Carberry P S, Hammer G L, et al.An overview of APSIM, a model designed for farming systems simulation.Eur J Agron, 2003, 18(3-4): 267-288. doi:  10.1016/S1161-0301(02)00108-9
    [27]
    Zhang J P, He Y K, Wang J, et al.Impact simulation of drought at different growth stages on grain formation and yield of maize.Chinese Journal of Agrometeorology, 2015, 36(1): 43-49. doi:  10.3969/j.issn.1000-6362.2015.01.006
    [28]
    Fang Y.Evaluation of Maize Drought Loss Based on Crop Growth Model.Shenyang:Shenyang Agriculture University, 2015.
    [29]
    Cao Y, Yang J, Xiong W, et al.Simulation of summer maize yield influenced by potential drought in China during 1961-2010.Acta Ecologica Sinica, 2014, 34(2): 421-429.
    [30]
    Mi N, Zhang Y S, Cai F, et al.Progress in the simulation of drought stress effect on crop production.Chinese Journal of Ecology, 2016, 35(9): 2519-2526.
    [31]
    DeJonge K C, Ascough Ⅱ J C, Andales A A, et al.Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation.Agr Water Manage, 2012, 115: 92-103. doi:  10.1016/j.agwat.2012.08.013
    [32]
    Cai F, Mi N, Ji R P, et al.Determination of crop parameters for WOFOST model and its performance evaluation based on field experiment of spring maize in Jinzhou, Liaoning.Chinese Journal of Ecology, 2019, 38(4): 1238-1248.
    [33]
    Schneider C L, Attinger S, Delfs J O, et al.Implementing small scale processes at the soil-plant interface:The role of root architectures for calculating root water uptake profiles.Hydrol Earth Syst Sci, 2010, 14: 279-289. doi:  10.5194/hess-14-279-2010
    [34]
    Wang Y, Zhou G S.Evapotranspiration characteristics and crop coefficient of rain-fed maize agroecosystem.Chinese Journal of Applied Ecology, 2010, 21(3): 647-653.
    [35]
    Qin P C, Liu M, Wan S Q, et al.Methods for yield forecast based on crop model with incomplete weather observations.J Appl Meteor Sci, 2016, 27(4): 407-416. doi:  10.11898/1001-7313.20160403
    [36]
    Sun L L, Hou Q, Ma Y P, et al.Adaptability of WOFOST model to simulate the whole growth period of maize in Hetao irrigation region of Inner Mongolia.Chinese Journal of Ecology, 2016, 35(3): 800-807. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201603032.htm
    [37]
    Fang Z X.Simulation of Potential Maize Yield in Jilin Province Based on Crop Model under Climate Change.Shenyang:Shenyang Agriculture University, 2016.
    [38]
    Li X F, Ma S Q, Gong L J.Evaluation of meteorological suitability degree during maize growth period based on WOFOST in northeast China.Chinese Journal of Agrometeorology, 2013, 34(1): 43-49. doi:  10.3969/j.issn.1000-6362.2013.01.007
    [39]
    Monteith J L.Evaporation and surface temperature.Quart J Roy Meteorol Soc, 1981, 107: 1-27. doi:  10.1002/qj.49710745102
    [40]
    Zhang S J, Zhou G S, Li R P.Daily crop coefficient of spring maize using eddy covariance observation and its actual evapotranspiration simulation.J Appl Meteor Sci, 2015, 26(6): 695-704. doi:  10.11898/1001-7313.20150606
    [41]
    Ben-Asher J, Garcia A G Y, Hoogenboom G.Effect of high temperature on photosynthesis and transpiration of sweet coin (Zea mays L.var.rugose).Photo synthetic, 2008, 46(4): 595-603.
    [42]
    Wu W, Jing Y S, Ma Y P, et al.Light response characteristics of summer maize at different growth stages under drought.J Appl Meteor Sci, 2013, 24(6): 723-730. doi:  10.3969/j.issn.1001-7313.2013.06.009
    [43]
    Jiang P, Cai F, Zhao Z Q, et al.Physiological and dry matter characteristics of spring maize in northeast China under drought stress.Water, 2018, 10(11): 1561. doi:  10.3390/w10111561
    [44]
    Yang J C, Zhang J H.Grain filling of cereals under soil drying.New Phytol, 2006, 169: 223-236. doi:  10.1111/j.1469-8137.2005.01597.x
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (1660) PDF downloads(109) Cited by()
    • Received : 2020-09-28
    • Accepted : 2020-10-28
    • Published : 2021-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint