Jiao Jian,Jia Xiaofang, Yan Peng, et al. Chemical characteristics of PM10 at background stations of central and eastern China in 2016-2017. J Appl Meteor Sci, 2021,32(1):65-77. DOI:  10.11898/1001-7313.20210106.
Citation: Jiao Jian,Jia Xiaofang, Yan Peng, et al. Chemical characteristics of PM10 at background stations of central and eastern China in 2016-2017. J Appl Meteor Sci, 2021,32(1):65-77. DOI:  10.11898/1001-7313.20210106.

Chemical Characteristics of PM10 at Background Stations of Central and Eastern China in 2016-2017

DOI: 10.11898/1001-7313.20210106
  • Received Date: 2020-09-29
  • Rev Recd Date: 2020-10-20
  • Publish Date: 2021-01-31
  • The characteristics of PM10 and its chemical composition from December 2015 to December 2017 are studied at three regional atmospheric background stations (Longfengshan, Lin'an, and Jinsha) in central and eastern China. The water-soluble ions (F-, Cl-, NO3-, SO42-, PO43-, Na+, K+, NH4+, Ca2+, Mg2+), carbon-containing compounds (OC, EC) and main elements in PM10 samples are analyzed. The average PM10 concentration at Lin'an (62.2±36.6 μg·m-3) during the whole period is the highest, followed by Jinsha (57.6±31.8 μg·m-3), and that at Longfengshan (57.5±55.3 μg·m-3) is the lowest. At those stations, the annual PM10 mass concentrations are lower than the national second-level air quality standard. The concentrations of PM10 in 2016-2017 show a downward trend, with the reductions of concentrations about 29.3% at Lin'an and 26.2% at Jinsha compared with the results during the year of 2013.The concentrations of SO42-, NO3-, and NH4+ during the whole period are 9.9, 8.2 μg·m-3 and 3.7 μg·m-3 at Lin'an, and 10.2, 6.7 μg·m-3 and 2.6 μg·m-3 at Jinsha, respectively, which are all higher than those at Longfengshan, with the average concentrations of 5.9 μg·m-3 for SO42-, 4.9 μg·m-3 for NO3-, and 2.1 μg·m-3 for NH4+. However, the ratio of NO3-/SO42- at Longfengshan and Lin'an are relatively higher. The concentrations of OC and EC during the whole period are 10.1 μg·m-3 and 2.7 μg·m-3 at Longfengshan, 6.1 μg·m-3 and 3.1 μg·m-3 at Lin'an, and 4.7 μg·m-3 and 2.3 μg·m-3 at Jinsha. Compared to the year of 2013, the concentrations of SO42-, NH4+ and OC during the whole period decrease by 38.1%, 26.0%, and 55.6% at Lin'an, respectively, and decrease by 46.3%, 51.9%, and 44.7% at Jinsha, while the concentrations of NO3- increase by 12.3% and 15.5% at Lin'an and Jinsha, respectively. The concentrations of EC decreases by 27.9% at Lin'an, but increases by 4.5% at Jinsha. The ratio of NO3-/SO42- increase obviously at all the stations, which indicates the increases of nitrate aerosols, due to the continuously control of coal combustion emissions and increase of car ownership.The seasonal concentrations of PM10, NO3-, EC and the ratio of NO3-/SO42- are lowest in summer at three stations. Meanwhile, the mass concentrations of SO42-, NO3- and NH4+ are basically higher in winter than in other seasons.
  • Fig. 1  The anion-cation balance in PM10

    Fig. 2  The average mass concentration of PM10 from Dec 2015 to Dec 2017

    Fig. 3  The monthly average ion composition concentration in PM10 from Dec 2015 to Dec 2017

    Fig. 4  NO3-/SO42-in PM10 from Dec 2015 to Dec 2017

    Table  1  The annual and seasonal average mass concentration of PM10 at Longfengshan, Lin'an and Jinsha stations

    时间 龙凤山站 临安站 金沙站
    质量浓度/(μg·m-3) 样本量 质量浓度/(μg·m-3) 样本量 质量浓度/(μg·m-3) 样本量
    2016年冬季* 63.1±39.5 26 73.9+39.1 25 74.9±44.9 14
    2016年春季* 65.4±40.7 22 80.7±49.2 26 75.1±35.2 14
    2016年夏季* 35.0±22.1 25 45.5±19.9 25 44.7±20.9 22
    2016年秋季* 54.7±46.9 19 51.8±28.8 25 44.4±26.2 19
    2017年冬季* 70.8±43.1 26 76.6±39.9 26 67.7±24.8 24
    2017年春季* 58.7±30.6 25 61.8±27.1 24 65.6±31.4 24
    2017年夏季* 22.5±7.9 22 42.1±23.1 25 45.4±20.1 24
    2017年秋季* 93.6±125.9 21 56.1±36.4 26 44.3±27.6 18
    2016年平均* 54.0±38.9 89 63.3±39.0 101 59.1±33.1 75
    2017年平均* 59.1±68.4 92 59.4±34.1 100 56.6±30.7 89
    研究期间 57.5±55.3 193 62.2±36.6 210 57.6±31.8 166
    2013年[19] 88.0 78.0
    2006—2007年[17] 81.8 114.2 107.4
        *注:年平均值计算为当年1—12月平均,季节平均按照自然季节的月份划分,下同。
    DownLoad: Download CSV

    Table  2  The annual and seasonal average ion composition in PM10 at Longfengshan Station from Dec 2015 to Dec 2017 (unit:μg·m-3)

    时间 Cl- SO42- NO3- PO43- Na+ NH4+ K+ Mg2+ Ca2+
    2016年冬季 0.3 9.3 5.6 1.3 1.0 3.1 0.9 0.1 0.7
    2016年春季 0.8 4.9 5.3 0.6 0.3 1.4 0.4 0.1 0.9
    2016年夏季 0.2 4.8 1.3 3.3 0.5 0.5 0.1 0.1 2.0
    2016年秋季 0.6 4.3 4.3 2.8 0.2 1.2 0.4 0.1 2.4
    2017年冬季 0.3 10.1 8.9 1.4 0.8 4.0 0.7 0.1 1.0
    2017年春季 0.7 5.0 5.6 0.4 0.3 1.4 0.5 0.1 0.9
    2017年夏季 0.0 2.3 0.6 0.2 0.3 0.3 0.1 0.0 0.6
    2017年秋季 3.3 5.4 7.2 0.2 0.4 4.5 2.0 0.1 0.8
    2016年平均 0.5 5.8 4.1 2.0 0.5 1.6 0.5 0.08 1.4
    2017年平均 1.1 5.3 5.2 0.6 0.4 2.3 0.8 0.07 0.9
    研究期间 0.7 5.9 4.9 1.3 0.5 2.1 0.6 0.07 1.1
    2006—2007年[17] 0.7 10.0 4.9 2.5
    DownLoad: Download CSV

    Table  3  The annual and seasonal average ion composition in PM10 at Lin'an Station from Dec 2015 to Dec 2017 (unit:μg·m-3)

    时间 Cl- SO42- NO3- PO43- Na+ NH4+ K+ Mg2+ Ca2+
    2016年冬季 0.8 14.8 8.7 0.6 1.2 5.1 0.6 0.1 1.1
    2016年春季 0.5 12.7 9.3 1.7 0.7 4.6 0.4 0.2 1.0
    2016年夏季 0.5 8.6 4.4 3.2 1.3 2.1 0.2 0.1 1.6
    2016年秋季 0.7 9.5 8.1 0.2 0.6 3.0 0.2 0.1 0.4
    2017年冬季 0.8 12.3 13.8 0.3 0.5 5.3 0.3 0.1 0.3
    2017年春季 0.2 8.2 8.7 0.1 0.5 3.0 0.5 0.1 1.5
    2017年夏季 0.1 6.8 3.3 0.4 0.3 1.5 0.3 0.1 1.1
    2017年秋季 0.6 6.4 6.5 0.1 0.8 2.3 0.2 0.2 1.5
    2016年平均 0.6 11.1 8.0 1.4 0.8 3.7 0.3 0.1 0.8
    2017年平均 0.5 8.0 8.3 0.2 0.5 3.5 0.3 0.2 1.3
    研究期间 0.6 9.9 8.2 0.8 0.7 3.7 0.3 0.1 1.1
    2013年[19] 16.0 7.3 5.0
    2006—2007年[17] 1.0 21.7 8.6 6.8
    DownLoad: Download CSV

    Table  4  The annual and seasonal average ion composition in PM10 at Jinsha Station from Dec 2015 to Dec 2017 (unit:μg·m-3)

    时间 Cl- SO42- NO3- PO43- Na+ NH4+ K+ Mg2+ Ca2+
    2016年冬季 0.3 12.9 4.9 0.1 0.3 3.9 0.9 0.2 0.3
    2016年春季 0.3 12.9 9.1 3.0 0.7 4.6 0.7 0.1 2.1
    2016年夏季 0.1 9.4 3.6 0.4 0.1 1.9 0.1 0.1 1.3
    2016年秋季 0.2 10.0 5.3 6.9 1.8 2.1 0.3 0.1 3.6
    2017年冬季 0.2 12.7 13.0 0.5 0.5 4.5 0.4 0.2 1.4
    2017年春季 0.3 10.0 7.9 0.1 0.2 1.4 0.3 0.1 1.5
    2017年夏季 0.3 7.3 1.8 0.2 0.3 0.8 0.3 0.1 1.3
    2017年秋季 0.8 8.4 4.3 0.5 1.0 1.8 0.7 0.1 2.0
    2016年平均 0.2 11.3 6.2 2.6 0.7 3.1 0.4 0.1 1.9
    2017年平均 0.3 9.3 7.0 0.3 0.4 2.2 0.4 0.1 1.7
    研究期间 0.3 10.2 6.7 1.3 0.6 2.6 0.4 0.1 1.8
    2013年[19] 19.0 5.8 5.4
    2006—2007年[17] 0.6 26.6 7.2 7.6
    DownLoad: Download CSV

    Table  5  The average of OC mass concentration, EC mass concentration and OC/EC from Dec 2015 to Dec 2017

    站点 时段 OC/(μg·m-3) EC/(μg·m-3) OC/EC平均值
    龙凤山 2016年冬季 12.0 3.1 3.7
    2016年春季 7.6 1.5 6.3
    2016年夏季 7.0 1.1 8.4
    2016年秋季 10.6 2.3 4.0
    2017年冬季 12.6 3.2 5.3
    2017年春季 9.2 2.7 3.5
    2017年夏季 3.3 1.6 2.1
    2017年秋季 20.8 5.9 2.8
    2016年平均 9.1 2.1 5.7
    2017年平均 10.6 3.2 3.4
    研究期间 10.1 2.7 4.5
    临安 2016年冬季 9.0 3.1 3.0
    2016年春季 7.9 2.9 2.8
    2016年夏季 5.7 1.9 9.5
    2016年秋季 5.4 2.3 2.3
    2017年冬季 9.0 3.0 3.0
    2017年春季 6.1 3.9 1.5
    2017年夏季 4.3 2.4 2.1
    2017年秋季 5.6 3.7 1.5
    2016年平均 7.2 2.7 3.8
    2017年平均 6.1 3.4 1.9
    研究期间 6.7 3.1 3.6
    2013年[19] 15.1 4.3 ~3.5
    2006—2007年[17] 12.0 2.5 ~4.8
    金沙 2016年冬季 7.0 3.3 3.6
    2016年春季 5.8 2.1 2.8
    2016年夏季 3.9 1.7 3.3
    2016年秋季 4.9 2.0 2.4
    2017年冬季 6.4 2.4 3.0
    2017年春季 3.2 2.1 1.7
    2017年夏季 4.1 1.9 2.2
    2017年秋季 3.2 2.2 1.8
    2016年平均 5.3 2.3 3.0
    2017年平均 4.2 2.3 1.9
    研究期间 4.7 2.3 2.4
    2013年[19] 8.5 2.2 ~3.9
    2006—2007年[17] 15.3 3.0 ~5.1
    DownLoad: Download CSV

    Table  6  Slope k and correlation coefficient R of OC and EC in PM10 from Dec 2015 to Nov 2017

    时段 龙凤山站 临安站 金沙站
    k R k R k R
    2016年冬季 3.56 0.90 2.57 0.78 0.35 0.53
    2016年春季 4.67 0.74 2.43 0.92 3.28 0.67
    2016年夏季 3.89 0.22 0.51 0.25 1.53 0.80
    2016年秋季 5.58 0.90 2.91 0.88 2.67 0.75
    2017年冬季 2.56 0.88 2.67 0.94 1.64 0.75
    2017年春季 3.35 0.65 1.97 0.77 1.00 0.67
    2017年夏季 2.16 0.74 0.84 0.43 1.59 0.61
    2017年秋季 4.13 0.98 1.68 0.95 1.21 0.82
      *注:[OC]=k×[EC]+b, b为截距。
    DownLoad: Download CSV

    Table  7  The average mass concentration and enrichment factor of main elements from Dec 2015 to Dec 2017

    元素 龙凤山站 临安站 金沙站
    平均质量浓度/(μg·m-3) 富集因子 平均质量浓度/(μg·m-3) 富集因子 平均质量浓度/(μg·m-3) 富集因子
    As 0.01 1364.05 0.01 508.28 0.01 1247.22
    Se 0.01 59804.33 0.01 42485.78 0.01 75625.97
    Cr 0.01 21.27 0.01 16.82 0.01 19.00
    Sb 0.86 1450911.93 0.81 600178.50 0.95 1284530.96
    Zn 0.13 637.56 0.24 517.69 0.18 695.69
    Sr 0.06 51.51 0.06 22.80 0.07 47.63
    Pb 0.03 723.59 0.05 571.71 0.05 1010.90
    Ni 0.00 17.29 0.01 17.33 0.02 64.43
    Co 0.01 149.63 0.02 94.44 0.02 244.75
    Cd 0.34 571539.73 0.29 215363.69 0.36 491680.50
    Mn 0.10 34.02 0.12 18.59 0.11 30.52
    Mg 1.18 18.89 1.28 9.09 1.36 17.53
    V 0.00 3.74 0.00 3.20 0.00 5.58
    Ca 6.75 62.45 7.30 29.86 7.70 57.23
    Cu 0.26 1596.15 0.26 703.39 0.18 874.59
    Ti 0.07 4.97 0.07 2.45 0.04 2.45
    Sc 0.00 61.05 0.01 43.97 0.01 66.56
    Al 0.40 1.66 0.69 1.26 0.42 1.38
    Na 0.38 4.50 0.33 1.75 0.38 3.66
    K 2.06 26.67 1.64 9.43 2.04 21.27
    S 1.30 1672.84 2.21 1262.25 1.74 1805.41
    DownLoad: Download CSV
  • [1]
    Molnár A, Mészáros E, Hansson H C, et al.Importance of organic and elemental carbon in the fine atmospheric aerosol particles.Atmos Environ, 1999, 17(33): 2745-2750.
    [2]
    Li D P, Cheng X H, Sun Z A, et al.Radiative effects of aerosols in different areas of Beijing.J Appl Meteor Sci, 2018, 29(5): 609-618. doi:  10.11898/1001-7313.20180509
    [3]
    Ma X L, Gao X N, Liu Y, et al.Simulations of aerosol influences on the East Asian winter monsoon.J Appl Meteor Sci, 2018, 29(3): 333-343. doi:  10.11898/1001-7313.20180307
    [4]
    Liang Y X, Che H Z, Wang H, et al.Aerosol optical properties and radiative effects during a pollution episode in Beijing.J Appl Meteor Sci, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506
    [5]
    Heintzenberg J.Fine particles in the global troposphere-A review.Tellus, 1989, 41B: 149-160.
    [6]
    Xu J, Bergin M H, Yu X, et al.Measurement of aerosol chemical, physical, and radiative properties in the Yangtze delta region of China.Atmos Environ, 2002, 36: 161-173. doi:  10.1016/S1352-2310(01)00455-1
    [7]
    Matta E, Facchini M C, Decesari S, et al.Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy.Atmos Chem Phys, 2003, 3(3): 623-637. doi:  10.5194/acp-3-623-2003
    [8]
    Fridlind A M, Jacobson M Z.A study of gas-aerosol equilibrium and aerosol pH in the remote marine boundary layer during the First Aerosol Characterization Experiment (ACE 1).J Geophys Res Atmos, 2000, 105(D13): 17325-17340. doi:  10.1029/2000JD900209
    [9]
    Svenningsson B, Hansson H C, Wiedensohler A, et al.Hygroscopic growth of aerosol particles and its influence on nucleation scavenging in cloud:Experimental results from Kleiner Feldberg.J Atmos Chem, 1994, 19(1): 129-152.
    [10]
    Tao J, Ho K F, Chen L G, et al.Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring.Particuology, 2009, 7(1): 68-75. doi:  10.1016/j.partic.2008.11.002
    [11]
    Offenberg J H, Baker J E.Aerosol size distributions of elemental organic carbon in urban and over-water atmosphere.Atmos Environ, 2000, 34(10): 1509-1517. doi:  10.1016/S1352-2310(99)00412-4
    [12]
    Zheng B, Tong D, Li M, et al.Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions.Atmos Chem Phys, 2018, 18(19): 14095-14111. doi:  10.5194/acp-18-14095-2018
    [13]
    Zhao S P, Yin D Y, Yu Y, et al.PM2.5 and O3 pollution during 2015-2019 over 367 Chinese cities:Spatiotemporal variations, meteorological and topographical impacts.Environ Pollut, 2020, 264: 114694. doi:  10.1016/j.envpol.2020.114694
    [14]
    Wang Y S, Li W J, Gao W K, et al.Trends in particulate matter and its chemical compositions in China from 2013-2017.Sci China Earth Sci, 2019, 62: 1857-1871. doi:  10.1007/s11430-018-9373-1
    [15]
    Zhang Y M, Vu V T, Sun J Y, et al.Significant changes in chemistry of fine particles in wintertime Beijing from 2007 to 2017:Impact of clean air actions.Environ Sci Technol, 2019, 54: 1344-1352.
    [16]
    Zhang Y M, Yan P, Yang D Z, et al.Seasonal physical and chemical features variation of ambient aerosol in Lin'an.J Appl Meteor Sci, 2007, 18(5): 635-644. doi:  10.3969/j.issn.1001-7313.2007.05.008
    [17]
    Zhang X Y, Wang Y Q, Niu T, et al.Atmospheric aerosol compositions in China:Spatial/Temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols.Atmos Chem Phys, 2012, 12(2): 779-799. doi:  10.5194/acp-12-779-2012
    [18]
    Luan T, Guo X L, Zhang T H, et al.The scavenging process and physical removing mechanism of pollutant aerosols by different precipitation intensities.J Appl Meteor Sci, 2019, 30(3): 279-291. doi:  10.11898/1001-7313.20190303
    [19]
    Zhang X Y, Wang J Z, Wang Y Q, et al.Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors.Atmos Chem Phys, 2015, 15(22): 12935-12952. doi:  10.5194/acp-15-12935-2015
    [20]
    Wang Y H, Gao W, Wang S, et al.Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017.National Science Review, 2020, 7(8): 1331-1339. doi:  10.1093/nsr/nwaa032
    [21]
    Ke H B, Gong S L, He J J, et al.Assessment of open biomass burning impacts on surface PM2.5 concentration.J Appl Meteor Sci, 2020, 31(1): 105-116. doi:  10.11898/1001-7313.20200110
    [22]
    Zhang F J, Xu J, Ma J Z, et al.Impact of crop residue burning on PM2.5 inorganic components in Beijing-Tianjin-Hebei and surrounding areas.J Appl Meteor Sci, 2019, 30(4): 467-478. doi:  10.11898/1001-7313.20190407
    [23]
    Yan P, Zhang R J, Huan N, et al.Characteristics of aerosols and mass closure study at two WMO GAW regional background stations in eastern China.Atmos Environ, 2012, 60: 121-131. doi:  10.1016/j.atmosenv.2012.05.050
    [24]
    Yan P, Mao J T, Yang D Z, et al.The characterization of aerosol physical and chemical properties at Lin'an station during the transport of a sandstorm.Quaternary Sciences, 2004, 24(4): 437-446.
    [25]
    Zhang D W, Wang X J, Liu B X, et al.Characteristics of PM2.5 and its chemical composition in the urban area of Beijing.Research of Environmental Sciences, 2015, 28(8): 1186-1192.
    [26]
    Yang S X, Cao J J, Shen Z X, et al.Variations of water-soluble ions in PM2.5 at Xi'an between summer and winter.Environmental Chemistry, 2012, 31(8): 1179-1188.
    [27]
    Zhang H, An Q, Zhao S Y, et al.Advances in the research of optical properties and radiative forcing of nitrate aerosols.Acta Meteor Sinica, 2017, 75(4): 539-551.
    [28]
    Zhou L, Wang W, Hou S, et al.Heterogeneous uptake of nitrogen dioxide on Chinese mineral dust.J Environ Sci, 2015(36): 110-118.
    [29]
    Xu H H, Xu J S, He J, et al.Characteristics and source analysis of atmospheric carbonaceous aerosols in the cities of Hangzhou and Ningbo.Environmental Science, 2018, 39(8): 3511-3517. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201808006.htm
    [30]
    Jia X F, Yan P, Meng Z Y, et al.Characteristics of PM2.5 in heavy pollution events in Beijing and surrounding areas from November to December in 2016.J Appl Meteor Sci, 2019, 30(3): 302-315. doi:  10.11898/1001-7313.20190305
    [31]
    Yan P, Huan N, Zhang Y M, et al.Size resolved aerosol OC, EC at a regional background station in the suburb of Beijing.J Appl Meteor Sci, 2012, 23(3): 285-293. http://yyqxxb.xml-journal.net/article/id/20120304
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(7)

    Article views (1335) PDF downloads(60) Cited by()
    • Received : 2020-09-29
    • Accepted : 2020-10-20
    • Published : 2021-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint