Liu Bojun, Zhang Yaping, Li Zhongju, et al. An objective hailstorm labeling algorithm based on ground observation. J Appl Meteor Sci, 2021,32(1):78-90. DOI:  10.11898/1001-7313.20210107.
Citation: Liu Bojun, Zhang Yaping, Li Zhongju, et al. An objective hailstorm labeling algorithm based on ground observation. J Appl Meteor Sci, 2021,32(1):78-90. DOI:  10.11898/1001-7313.20210107.

An Objective Hailstorm Labeling Algorithm Based on Ground Observation

DOI: 10.11898/1001-7313.20210107
  • Received Date: 2020-10-12
  • Rev Recd Date: 2020-11-30
  • Publish Date: 2021-01-31
  • Data labeling makes the key foundation of building data sets for deep learning, especially in the intelligent forecasts of severe weather, such as hail, the observations of which are lacking. Disaster report is a kind of information that describes the details of meteorological disasters which is collected by meteorological information officer. Due to the high coverage rate of informants throughout villages and communities, disaster report is considered to have good consistency and high spatial resolution. However, the vague description of disaster occurrence time in disaster report limits its application. To solve this problem, 13 hail cases(divided into reference set and verification set) with accurate occurrence time in hail reports in Chongqing during 2008-2019 are selected, and an objective hailstorm labeling algorithm based on actual hail observations is developed using fuzzy logic algorithm. In order to obtain a reasonable match between hail occurrence location and convective storm, the distance between the centroid of the storm and initial guess location of hail occurrence, the maximum values of reflectivity, height of 45 dBZ reflectivity, vertical integral liquid water content and echo top are selected as discriminant factors, and the storm is identified by the storm cell identification and tracking (SCIT) algorithm. In reference set, 7 hail cases can be labeled correctly and only 1 case is failed to identify storms. The time bias between the labeling time and ground disaster report is less than 6 minutes during 5 cases. Inspected by verification set (5 cases in 2019), the algorithm labeling accuracy is 100% and the matching degree ranges from 0.887 to 1.000. Furthermore, the algorithm is applied to 22 hailstorm labeling cases lacking accurate time, and the results are compared with the manual labeling results by forecasters. Subjective and objective methods tend to identify the same storm cell and have little impact on data set construction. Forecasters tend to label the same storm cell 6-12 minutes ahead. Further analysis shows that the size of hail has no significant effects on the labeling result. The algorithm is not sensitive to the occurrence time of hail disaster, and it can give reliable labeling results for both long time living storm and local hail disaster. However, when the identification algorithm fails to figure out storms, or the initial guess location deviation is large, it will have a significant negative impact on the labeling results.
  • Fig. 1  Diagram of the object-labeling algorithm for hailstorm

    Fig. 2  Membership functions of each index of object-labeling algorithm for hailstorm

    Fig. 3  The influence of distance weight on labeling results

    Fig. 4  Vertical integrated liquid water (the shaded), composite reflectivity (the line, unit:dBZ) and storm path from SCIT at labeling time for each hail case (triangles, the red one means labeling time)

    Fig. 5  Composite reflectivity evolution with storm path information in the hail case at Nanchuan and Fengdu on 5 Jun 2008

    Fig. 6  Composite reflectivity evolution with storm path information in the hail case at Nanchuan on 10 Apr 2008

    Fig. 7  Influence of initial guess position disturbance on labeling results

    Fig. 8  Composite reflectivity at 2012 BT 30 Apr 2018(a) and profile along AB in Fig. 8a(b)

    Table  1  Hail cases with exactly time and radar observation in Chongqing during 2008-2019

    过程日期 地面记录降雹时刻 受灾区县 冰雹大小
    2008-04-10 21:30 南川 小冰雹
    2008-06-05 15:20 南川 不明
    15:28—15:32 丰都 小冰雹
    2010-05-06 01:12 梁平 大冰雹
    2011-07-23 17:30 渝北 小冰雹
    2014-04-17 约23:48 沙坪坝 大冰雹
    2015-07-25 约13:31 丰都 不明
    2018-03-17 约22:20 彭水 大冰雹
    2019-02-19 22:50—23:00 酉阳 小冰雹
    2019-03-19 23:20—23:30 黔江 大冰雹
    2019-04-08 18:30—18:40 彭水 不明
    2019-04-24 20:30—20:40 巫溪 小冰雹
    2019-08-01 16:10—16:30 巫山 小冰雹
    DownLoad: Download CSV

    Table  2  Average heights of 0℃ and -20℃ at Shapingba sounding station from Mar to Sep during 2014-2018

    月份 0℃层高度/km -20℃层高度/km
    3 3.2783 6.6654
    4 3.9190 7.2017
    5 4.6056 7.9129
    6 5.2451 8.6644
    7 5.4405 8.8348
    8 5.3239 8.7461
    9 5.0934 8.5597
    DownLoad: Download CSV

    Table  3  Results of objective labeling algorithm for hailstorm based on reference set

    过程日期 冰雹大小 冰雹发生时间 输入数据时间范围 客观算法标识时间 匹配程度
    2008-04-10 小冰雹 21:30 17:00—次日00:00 21:42 1.000
    2008-06-05 不明 15:20 11:20—19:20 15:06 0.899
    小冰雹 15:28—15:32 11:20—19:20
    2010-05-06 大冰雹 次日01:12 20:00—次日04:00 01:12 0.981
    2011-07-23 小冰雹 17:30 13:30—21:30 17:36 1.000
    2014-04-17 大冰雹 23:48 21:00—次日05:00 23:48 1.000
    2015-07-25 不明 13:31 11:00—16:30 13:30 0.785
    2018-03-17 大冰雹 22:20 19:00—次日01:00 22:18 0.805
    DownLoad: Download CSV

    Table  4  Performance of objective labeling algorithm for hailstorm based on validation set

    过程日期 冰雹大小 冰雹发生时间 输入数据时间范围 客观算法标识时间 匹配程度
    2019-02-19 小冰雹 22:50—23:00 22:00—次日00:00 23:00 0.893
    2019-03-19 大冰雹 23:20—23:30 22:00—次日02:00 23:30 0.903
    2019-04-08 不明 18:30—18:40 17:30—19:30 18:36 1.000
    2019-04-24 小冰雹 20:30—20:40 19:00—21:00 20:18 0.984
    2019-08-01 小冰雹 16:10—16:30 15:00—18:00 16:18 0.887
    DownLoad: Download CSV
  • [1]
    Mcgovern A, Elmore K L, Gagne D J, et al.Using artificial intelligence to improve real-time decision making for high-impact weather.Bull Amer Meteor Soc, 2017, 98(10): 2073-2090. doi:  10.1175/BAMS-D-16-0123.1
    [2]
    Gange D J, McGovern A, Haupt S E, et al.Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles.Wea Forecasting, 2017, 32(5): 1819-1840. doi:  10.1175/WAF-D-17-0010.1
    [3]
    Han F, Long M S, Li Y A, et al.The application of recurrent neural network to nowcasting.J Appl Meteor Sci, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106
    [4]
    Witt A, Eilts M D, Stumpf G J, et al.An enhanced hail detection algorithm for the WSR-88D.Wea Forecasting, 1998, 13: 286-303. doi:  10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2
    [5]
    Cintineo J L, Smith T M, Lakshmanan V, et al.An objective high-resolution hail climatology of the contiguous United States.Wea Forecasting, 2012, 27(5): 1235-1248. doi:  10.1175/WAF-D-11-00151.1
    [6]
    Zhang B X, Li G C, Liu L P, et al.Identification method of hail weather based on fuzzy-logical principle.J Appl Meteor Sci, 2014, 25(4): 415-426. doi:  10.3969/j.issn.1001-7313.2014.04.004
    [7]
    Wang J, Liu L P.The evaluation of WSR-88D hail detection algorithm over Guizhou region.J Appl Meteor Sci, 2011, 22(1): 96-106. doi:  10.3969/j.issn.1001-7313.2011.01.010
    [8]
    Xiao Y J, Liu L P.Study of methods for interpolating from weather radar network to 3-D grid and mosaics.Acta Meteor Sinica, 2006, 64(5): 647-656. doi:  10.3321/j.issn:0577-6619.2006.05.011
    [9]
    Hu S, Gu S S, Zhuang X D, et al.Automatic identification of storm cells using Doppler radars.Acta Meteor Sinica, 2006, 64(6): 796-808.
    [10]
    Hu Y Q, Bian Y X, Huang M Y, et al.Characteristics of hailstone distribution based on disaster information in Beijing from 1981 to 2017.J Appl Meteor Sci, 2019, 30(6): 710-721. doi:  10.11898/1001-7313.20190607
    [11]
    Tian F Y, Zheng Y G, Zhang T, et al.Statistical characteristics of environmental parameters for warm season short-duration heavy rainfall over central and eastern China.J Meteor Res, 2015, 29(3): 370-384. doi:  10.1007/s13351-014-4119-y
    [12]
    Cao Y C, Tian F Y, Zheng Y G, et al.Statistical characteristics of environmental parameters for hail over the two-step terrains of China.Plateau Meteor, 2018, 31(1): 185-196.
    [13]
    Zheng Y G, Zhou K H, Sheng J, et al.Advances in techniques of monitoring, forecasting and warning of severe convection weather.J Appl Meteor Sci, 2015, 26(6): 641-657. doi:  10.11898/1001-7313.20150601
    [14]
    Zadeh L A.Fuzzy sets.Information & Control, 1965, 8(3): 338-353.
    [15]
    Cho Y H, Lee G, Kim K E, et al.Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes.J Atmos Oceanic Tech, 2006, 23(9): 1206-1222. doi:  10.1175/JTECH1913.1
    [16]
    Gourley J J, Tabary P, Jacques P D C.A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations.J Atmos Oceanic Tech, 2006, 24(8): 1439-1451.
    [17]
    Chen M X, Gao F, Kong R, et al.Introduction of auto-nowcasting system for convective storm and its performance in Beijing Olympics meteorological service.J Appl Meteor Sci, 2010, 21(4): 395-404. doi:  10.3969/j.issn.1001-7313.2010.04.002
    [18]
    Li F, Liu L P, Wang H Y, et al.Identification of non-precipitation meteorological echoes with Doppler weather radar.J Appl Meteor Sci, 2012, 23(2): 147-158. doi:  10.3969/j.issn.1001-7313.2012.02.003
    [19]
    Zhou K H, Zheng Y G, Wang T B, et al.Fuzzy logic algorithm of thunderstorm gale identification using multisource data.Meteor Mon, 2017, 43(7): 781-791.
    [20]
    Qi C, Jin C X, Guo W L, et al.Icing potential index of aircraft icing based on fuzzy logic.J Appl Meteor Sci, 2019, 30(5): 619-628. doi:  10.11898/1001-7313.20190510
    [21]
    Xu S Y, Wu C, Liu L P.Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar.J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [22]
    Yu X D, Yao X P, Xiong T N, et al.Principle and Operational Application of Doppler Weather Radar.Beijing:China Meteorological Press, 2006.
    [23]
    Wu J K, Yu X D.Review of detection and warning methods for severe hail events by Doppler weather radars.J Arid Meteor, 2009, 27(3): 197-206. doi:  10.3969/j.issn.1006-7639.2009.03.001
    [24]
    Li Y C, Wang F X, Pei Y J, et al.Products of CINRAD-SA Doppler radar applied to different typical weather.Meteor Mon, 2006, 32(10): 64-69.
    [25]
    Liu D, Zhang Y P, Chen G C, et al.Chongqing Weather Forecast Technical Manual.Beijing:China Meteorological Press, 2012.
    [26]
    Orlanski I.A rational subdivision of scales for atmospheric processes.Bull Amer Meteor Soc, 1975, 56: 527-530. doi:  10.1175/1520-0477-56.5.527
    [27]
    Fang C, Yu X D, Zhu W J, et al.Characteristics of the thunderstorm gale process in Hunan and Guangdong on 20 March 2013.Meteor Mon, 2015, 41(11): 1305-1314. doi:  10.7519/j.issn.1000-0526.2015.11.001
    [28]
    Darrah R P.On the relationship of severe weather to radar tops.Mon Wea Rev, 1978, 106(9): 1332-1339. doi:  10.1175/1520-0493(1978)106<1332:OTROSW>2.0.CO;2
    [29]
    Smith P L, Myers C G, Orville H D.Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation.J Appl Meteor, 1975, 14(9): 1156-1165.
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(4)

    Article views (1483) PDF downloads(127) Cited by()
    • Received : 2020-10-12
    • Accepted : 2020-11-30
    • Published : 2021-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint