Lou Xiaofeng, Fu Yu, Su Zhengjun. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. DOI: 10.11898/1001-7313.20210202.
Citation: Lou Xiaofeng, Fu Yu, Su Zhengjun. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. DOI: 10.11898/1001-7313.20210202.

Advances of Silver Iodide Seeding Agents for Weather Modification

More Information
  • Silver iodide (AgI) is the most widely-used seeding agent in field experiment and operations of weather modification. There are several nucleation modes for AgI seeding agents, and the nucleation process is affected by many factors including atmospheric temperature, humidity, particle size, composition of seeding agent and its particle generation method. The nucleation efficiency, nucleation modes affect the number of nucleated crystals, and thus affect the seeding effect.Through laboratory research of cloud chamber and theoretical calculation, the critical embryo sizes required for different nucleation mechanisms, nucleation threshold temperature, nucleation mechanisms, factors effecting nucleation for AgI and with some other added materials are analyzed. It is currently accepted that there are four nucleation mechanisms, including deposition, condensation freezing, contact freezing and immersion freezing nucleation. And it is recognized that nucleation processes depend on the varied temperature, humidity, and cloud conditions that can be encountered in the atmosphere. Immersion nucleation refers to nucleation of freezing by a particle immersed in water, and deposition nucleation refers to nucleation of the ice phase from the vapor, contact nucleation refers to the nucleation of the freezing induced by a particle during first contact with supercooled water, and condensation freezing is the nucleation of the freezing from the condensation of vapor to liquid droplet.The ice-nucleating properties and nucleation effectiveness of cloud seeding materials produced by burning acetone solutions or pyrotechnics of AgI and other materials are tested in a wind-tunnel cloud chamber test facility along with isothermal cloud chamber and dynamic cloud chamber. Through laboratory test, different formulations are compared, and high nucleation efficiency of seeding materials are selected, and nucleation features for four nucleation modes separately are obtained.Silver iodide seeding cloud model are based on a combination of theory and laboratory results. The ice nucleation schemes employed in cloud models vary widely. Hsie's seeding scheme simulated both contact-freezing and deposition nucleation on the laboratory measured effectiveness spectra of nucleus. Meyers seeding scheme considers all the four processes on cloud chamber results of ice-forming processes by AgI. In China, AgI seeding models are developed since the 1990s, either similar with Hsie's seeding scheme on three nucleation mechanisms, or similar with Meyers seeding scheme on four nucleation mechanisms.
  • [1]
    Schaefer V I.The production of ice crystals in a cloud of supercooled water droplets.Science,1946,104:457-459. DOI: 10.1126/science.104.2707.457
    [2]
    Vonnegut B. The nucleation of ice formation by silver iodide. J Appl Phys, 1947, 18(7): 593-595. DOI: 10.1063/1.1697813
    [3]
    毛节泰, 郑国光. 对人工影响天气若干问题的探讨. 应用气象学报, 2006, 17(5): 643-646. http://qikan.camscma.cn/article/id/200605109

    Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. http://qikan.camscma.cn/article/id/200605109
    [4]
    郑国光, 郭学良. 人工影响天气科学技术现状与发展趋势. 中国工程科学, 2012, 14(9): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201209005.htm

    Zheng G G, Guo X L. Status and development of sciences and technology for weather modification. Engineering Sciences, 2012, 14(9): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201209005.htm
    [5]
    Dennis A S. Weather Modification by Cloud Seeding. New York: Academic Press, 1980.
    [6]
    吴兑. 人工增雨催化剂对环境的影响甚微. 广东气象, 2005(3): 16. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200503006.htm

    Wu D. Little effect on environment of rain enhancement seeding agents. Guangdong Meteorology, 2005(3): 16. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200503006.htm
    [7]
    段婧, 楼小凤, 汪会, 等. 人工影响天气用碘化银催化剂对区域环境影响的研究进展. 气象, 2020, 46(2): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202002011.htm

    Duan J, Lou X F, Wang H, et al. Research progress on impact of AgI in weather modification operations on environment in related areas. Meteor Mon, 2020, 46(2): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202002011.htm
    [8]
    楼小凤, 师宇, 李集明. 云降水和人工影响天气催化数值模式的发展及应用. 气象科技进展, 2016, 6(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603018.htm

    Lou X F, Shi Y, Li J M. Development and application of the cloud and seeding models in weather modification. Advances in Meteorological Science and Technology, 2016, 6(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603018.htm
    [9]
    Committee on the Status of and Future Directions in US Weather Modification Research and Operations. Critical issues in Weather Modification Research. Washington DC: The National Academies Press, 2003.
    [10]
    Orville H D. A review of cloud modeling in weather modification. Bull Amer Meteor Soc, 1996, 77: 1535-1555. DOI: 10.1175/1520-0477(1996)077<1535:AROCMI>2.0.CO;2
    [11]
    Vonnegut B. Nucleation of supercooled water clouds by silver iodide smokes. Chemical Reviews, 1949, 44(2): 277-289. DOI: 10.1021/cr60138a003
    [12]
    Vonnegut B. Techniques for generating silver iodide smoke. J Colloida Interface Sci, 1950, 5(1): 37-48. DOI: 10.1016/0095-8522(50)90004-3
    [13]
    Fletcher N H. On ice-crystal production by aerosol particles. J Meteor, 1959, 16: 173-180. DOI: 10.1175/1520-0469(1959)016<0173:OICPBA>2.0.CO;2
    [14]
    Pruppacher H R, Klett J D. Microphysics of Clouds and Precipitation. Dordecht Holland, 1978.
    [15]
    Vali G, DeMott P J, Mohler O, et al. Technical note: A proposal for ice nucleation terminology. Atmos Chem Phys, 2015, 15: 10263-10270. DOI: 10.5194/acp-15-10263-2015
    [16]
    Flecther N H. The Physics of Rain Clouds. Cambridge: Cambridge University Press, 1962.
    [17]
    Gokhale N R, Goold J. Droplet freezing by surface nucleation. J Appl Metor, 1968, 7: 870-874. DOI: 10.1175/1520-0450(1968)007<0870:DFBSN>2.0.CO;2
    [18]
    Alkezweeny A J. On the activation temperature of AgI-particles in cloud. J Wea Mod, 1971, 3: 111-114.
    [19]
    Cooper W A. A possible mechanism for contact nucleation. J Atmos Sci, 1974, 31: 1832-1837. DOI: 10.1175/1520-0469(1974)031<1832:APMFCN>2.0.CO;2
    [20]
    Edwards G R, Evans L F. Ice nucleation by silver iodide: I. Freezing vs sublimation. J Meteorol, 1960, 17: 627-634. DOI: 10.1175/1520-0469(1960)017<0627:INBSII>2.0.CO;2
    [21]
    Langer G, Cooper G, Nagamoto C T, et al. Ice nucleation mechanisms of submicron monodispersed silver iodide, IS-Dihydro-xynaphthalene and phloroglucinol aerosol particles. J Appl Meteor, 1978, 17: 1039-1048. DOI: 10.1175/1520-0450(1978)017<1039:INMOSM>2.0.CO;2
    [22]
    Edwards G R, Evans L F. Ice nucleation by silver iodide: Ⅲ. The nature of the nucleating site. J Atmos Sci, 1968, 25: 249-256. DOI: 10.1175/1520-0469(1968)025<0249:INBSII>2.0.CO;2
    [23]
    Sax R J, Goldsmith P. Nucleation of water drops by Brownian contact with AgI and other aerosols. Quart J Roy Meteor Soc, 1972, 98: 60-72. DOI: 10.1002/qj.49709841506
    [24]
    Pitter R L, Pruppacher H R. A wind tunnel investigation of freezing of small water droplets falling at terminal velocity in air. Quart J Roy Meteor Soc, 1973, 99: 540-550. DOI: 10.1002/qj.49709942111
    [25]
    Roberts P, Hallett J. A laboratory study of ice nucleating properties of some mineral particulates. Quart J Roy Meteor Soc, 1968, 94: 25-34. DOI: 10.1002/qj.49709439904
    [26]
    Levkov L. Congelation de gouttes d'eau au contact de particles de CuS. J Rech Atmos, 1971, 5: 133-136.
    [27]
    Mason B J, Van den Heuvel A P. The properties and behavior of some artificial ice nuclei. Proc Phys Soc London, 1959, 74: 744-755. DOI: 10.1088/0370-1328/74/6/312
    [28]
    Marcolli C, Nagare B, Welti A, et al. Ice nucleation efficiency of AgI: Review and new insights. Atmos Chem Phys, 2016, 16: 8915-8937. DOI: 10.5194/acp-16-8915-2016
    [29]
    Ladino L, Stetzer O, Lüönd F, et al. Contact freezing experiments of kaolinite particles with cloud droplets. J Geophys Res, 2011, 116, D22202. http://adsabs.harvard.edu/abs/2011JGRD..11622202L
    [30]
    Nagare B, Marcolli C, Stetzer O, et al. Comparison of measured and calculated collision efficiencies at low temperatures. Atmos Chem Phys, 2015, 15: 13759-13776. DOI: 10.5194/acp-15-13759-2015
    [31]
    Welti A, Lüönd F, Kanji Z A, et al. Time dependence of immersion freezing: An experimental study on size selected kaolinite particles. Atmos Chem Phys, 2012, 12: 9893-9907. DOI: 10.5194/acp-12-9893-2012
    [32]
    Lüönd F, Stetzer O, Welti A, et al. Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J Geophys Res, 2010, 115, D14201. DOI: 10.1029/2009JD012959
    [33]
    Kohn M, Lohmann U, Welti A, et al. Immersion mode ice nucleation measurements with the new portable immersion mode cooling chamber (PIMCA). J Geophys Res Atmos, 2016, 121: 4713-4733. DOI: 10.1002/2016JD024761
    [34]
    DeMott P J. Comparisons of the behavior of AgI-type ice nucleating aerosols in laboratory simulated, clouds. J Wea Mod, 1988, 20: 44-50. http://www.researchgate.net/publication/303174147_Comparisons_of_the_behavior_of_AgI-type_ice_nucleating_aerosols_in_laboratory-simulated_clouds
    [35]
    DeMott P J, Finnegan W G, Grant L O. An application of chemical kinetic theory and methodology to characterize the ice nucleating properties of aerosols used in weather modification. J Climate Appl Meteor, 1983, 22: 1190-1203. DOI: 10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2
    [36]
    Finnegan W G, Pitter R L. Rapid ice nucleation by acetone-silver iodide generator aerosols. J Wea Mod, 1988, 20: 51-53. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Journal%20of%20Neurology%20Neurosurgery%20and%20Psychiatry&volume=81&issue=4&spage=428
    [37]
    Donnan J A, Blair D N, Finnegan W G, et al. Nucleation efficiencies of AgI-NH4I and AgI-NaI acetone solutions and pyrotechnic generators as a function of LWC and generator flame temperature, a preliminary REPORT. J Wea Mod, 1970, 2: 155-164.
    [38]
    Donnan J A, Blair D N, Wright D A. A wind tunnel/cloud chamber facility for cloud modification research. J Wea Mod, 1971, 3: 123-133.
    [39]
    Parungo F P. Electron-microscope study of silver iodide as contact or sublimation nuclei. J Appl Meteor, 1973, 12: 517-521. DOI: 10.1175/1520-0450(1973)012<0517:EMSOSI>2.0.CO;2
    [40]
    Blair D N, Davis B L, Dennis A S. Cloud chamber tests of generators using acetone solutions of AgI-NaI, AgI-KI, and AgI-NH4I. J Appl Meteor, 1973, 12: 1012-1017. DOI: 10.1175/1520-0450(1973)012<1012:CCTOGU>2.0.CO;2
    [41]
    DeMott P J, Rogers D C. Freezing nucleation rates of dilute solution droplets mersured between -30 and -40℃ in laboratory simulations of natural clouds. J Atmos Sci, 1990, 47: 1056-1064. DOI: 10.1175/1520-0469(1990)047<1056:FNRODS>2.0.CO;2
    [42]
    DeMott P J. Quantifying Ice Nucleation by Silver Iodide Aerosols. Fort Collins: Colorado State University, 1990.
    [43]
    DeMott P J. Quantitative descriptions of ice formation mechanisms of silver iodide type aerosols. Atmos Res, 1995, 38: 63-99. DOI: 10.1016/0169-8095(94)00088-U
    [44]
    成核率检定小组. 三七高炮碘化银炮弹冰核生成率的检定. 气象, 1975(1): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197501006.htm

    The measurement group of nucleation efficiency. Measurement of ice nucleation efficiency of 37 silver iodide shell. Meteor Mon, 1975(1): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197501006.htm
    [45]
    莫天麟, 张瑞莲, 雷连科, 等. 降雨弹催化剂改进试验. 气象科学, 1980(1): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX1980Z1009.htm

    Mo T L, Zhang R L, Lei L K, et al. An improved test of rain-shell materials for artificial ice nuclei. Journal of the Meteorological Sciences, 1980(1): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX1980Z1009.htm
    [46]
    陈汝珍, 酆大雄. 箭载催化剂冰核生成率的检定. 气象学报, 1985, 43(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198501002.htm

    Chen R Z, Feng D X. The examination of the ice nucleating efficiency of AgI in the JBR-56 rockets. Acta Meteor Sinica, 1985, 43(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198501002.htm
    [47]
    Mason B J. The Physics of Clouds. Oxford: Oxford University Press, 1971.
    [48]
    酆大雄, 陈汝珍, 蒋耿旺, 等. 高效碘化银烟火剂及其成冰性能的研究. 气象学报, 1995, 53(1): 83-90.

    Feng D X, Chen R Z, Jiang G W, et al. The high efficient AgI pyrotechnics and their ice nucleating properties. Acta Meteor Sinica, 1995, 53(1): 83-90.
    [49]
    酆大雄, 王云卿, 陈汝珍, 等. 一个用于人工冰核研究的2 m3等温云室. 气象学报, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm

    Feng D X, Wang Y Q, Chen R Z, et al. A 2 m3 isothermal cloud chamber for the study of artificial ice nuclei. Acta Meteor Sinica, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm
    [50]
    Feng D, Finnegan W G. An efficient, fast functioning nucleating agent-AgI-AgCl-NaCl. J Wea Mod, 1989, 21: 41-45. http://www.weathermodification.org/publications/index.php/JWM/article/viewArticle/355
    [51]
    酆大雄. 燃烧AgI丙酮溶液产生冰核气溶胶. 气象, 1991, 17(3): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199103001.htm

    Feng D X. The generation of ice nucleus aerosols by burning AgI-acetone solution. Meteor Mon, 1991, 17(3): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199103001.htm
    [52]
    Amand P, Finnegan W G, Burkardt L. Understanding of the use of simple and complex ice nuclei generated from pyrotechnics and acetone burners. J Wea Mod, 1971, 3: 31-48.
    [53]
    Sax R I, Garvey D M, Purungo F P. Characteristics of AgI pyrotechnic nucleant used in NOAA's Florida Arca Cumulus Experiment. J Appl Meteor, 1979, 18: 195-202. DOI: 10.1175/1520-0450(1979)018<0195:COAPNU>2.0.CO;2
    [54]
    Scott P T, Finnegan W G, Sinclair P C. Characterization of a modified hexagonal silver iodide ice nucleus aerosol. J Appl Meteor, 1989, 28: 722-726. DOI: 10.1175/1520-0450(1989)028<0722:COAMHS>2.0.CO;2
    [55]
    苏正军, 郑国光, 关立友, 等. 一个用于催化剂成冰性能检测的新型等温云室. 高原气象, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm

    Su Z J, Zheng G G, Guan L Y, et al. A new 1 m3 isothermal cloud chamber for the study of artificial ice nuclei. Plateau Meteorology, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm
    [56]
    苏正军, 郑国光, 关立友. 人工冰核的核化速率实验. 气象, 2010, 36(11): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011010.htm

    Su Z J, Zheng G G, Guan L Y. Experimental study on nucleation rate of artificial ice nuclei. Meteor Mon, 2010, 36(11): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011010.htm
    [57]
    游来光, 王广河, 酆大雄. 人工增雨催化技术系统研究. 中国气象科学研究院年报, 2000(1): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQKN200000016.htm

    You L G, Wang G H, Feng D X. Cloud seeding technique system for precipitation enhancement. Annual Report of CAMS, 2000(1): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQKN200000016.htm
    [58]
    苏正军, 郑国光, 关立友, 等. 含AgI人工冰核粒子的电镜分析. 应用气象学报, 2008, 19(2): 137-144. http://qikan.camscma.cn/article/id/20080226

    Su Z J, Zheng G G, Guan L Y, et al. Particle sizing analysis on AgI pyrotechnics with the electron microscope. J Appl Meteor Sci, 2008, 19(2): 137-144. http://qikan.camscma.cn/article/id/20080226
    [59]
    孔君, 王广河, 房文, 等. 含AgI焰剂成冰性能与物化特征的实验研究. 气象, 2016, 42(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601009.htm

    Kong J, Wang G H, Fang W, et al. Laboratory study on nucleating properties and microstructure of AgI pyrotechnics. Meteor Mon, 2016, 42(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601009.htm
    [60]
    杨绍忠, 楼小凤, 黄庚, 等. 一个观测冰核的15 L混合云室. 应用气象学报, 2007, 18(5): 716-728. http://qikan.camscma.cn/article/id/200705108

    Yang S Z, Lou X F, Huang G, et al. A 15 L mixing cloud chamber for testing ice nuclei. J Appl Meteor Sci, 2007, 18(5): 716-728. http://qikan.camscma.cn/article/id/200705108
    [61]
    杨绍忠, 楼小凤, 酆大雄, 等. 三七型人工增雨炮弹成核率改进试验. 气象学报, 2005, 63(增刊Ⅰ): 56-62.

    Yang S Z, Lou X F, Feng D X, et al. Improvement test on nucleation efficiency of 37 silver iodide shell. Acta Meteor Sinica, 2005, 63(Suppl Ⅰ): 56-62.
    [62]
    党娟, 苏正军, 房文, 等. 三七炮弹的碘化银成核率检测. 应用气象学报, 2016, 27(2): 140-147. DOI: 10.11898/1001-7313.20160202

    Dang J, Su Z J, Fang W, et al. The experiment of ice nucleus generating efficiency by model 37 silver iodide shell. J Appl Meteor Sci, 2016, 27(2): 140-147. DOI: 10.11898/1001-7313.20160202
    [63]
    金德镇, 张景红, 江中浩, 等. 纳米碘化银在人工影响天气的应用研究I: 理论分析结果和展望. 气候与环境研究, 2012, 17(6): 666-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206003.htm

    Jin D Z, Zhang J H, Jiang Z H, et al. Application of nano-AgI catalyst in weather modifcation. I: Result of theoretical analysis and prospect. Climatic and Environmental Research, 2012, 17(6): 666-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206003.htm
    [64]
    Alkezweeny A J. A contact nucleation model for seeded clouds. J Appl Meteor, 1971, 10: 732-738. http://adsabs.harvard.edu/abs/1971JApMe..10..732A
    [65]
    Plooster M N, Fukuta N. A numerical model of precipitation from seeded and unseeded cold orographic clouds. J Appl Meteor, 1975, 14: 859-867. http://adsabs.harvard.edu/abs/1975JApMe..14..859P
    [66]
    Yong K C. A numerical simulation of wintertime, orographic precipitation: PartⅠ. Description of model microphysics and numerical techniques. J Atmos Sci, 1974, 31: 1735-1748. http://adsabs.harvard.edu/abs/1974JAtS...31.1735Y
    [67]
    Yong K C. The role of contact nucleation in ice phase initiation in clouds. J Atmos Sci, 1974, 31: 768-776. http://adsabs.harvard.edu/abs/1974jats...31..768y
    [68]
    Gokhale N R, Spengler J D. Freezing of freely suspended supercooled water drops by contact nucleation. J Appl Meteor, 1972, 11: 157-160. http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1972JApMe..11..157G
    [69]
    Mason B J, Van den Heuvel A P. The properties and behavior of some artificial ice nuclei. Proc Phys Soc, 1959, 79: 104-111. http://adsabs.harvard.edu/abs/1959PPS....74..744M
    [70]
    Vali G.Remarks on the Mechanism of Atmospheric Ice Nucleation//Proc 8th Intern Conf Nucleation, 1973: 23-29.
    [71]
    Hsie E Y, Farley R D, Orville H D. Numerical simulation of ice-phase convective cloud seeding. J Appl Meteor, 1980, 19: 626-641. http://adsabs.harvard.edu/abs/1980japme..19..950h
    [72]
    Orville H D, Kopp F J. Numerical simulation of the life history of a hailstorm. J Atmos Sci, 1977, 34: 1596-1618. http://adsabs.harvard.edu/abs/1977JAtS...34.1596O
    [73]
    Chen C S, Orville H D. The effects of carbo black dust on cumulus scale convection. J Appl Meteor, 1977, 16: 401-412. http://adsabs.harvard.edu/abs/1977JApMe..16..401C
    [74]
    Orville H D, Kopp F J. Numerical Simulation of Cloud Seeding Experiments//Preprints, 4th Conf Weather Modification. Amer Meteor Soc, 1974: 28-35.
    [75]
    Orville H D, Farley R D, Hirse J H. Some surprising results from simulated seeding of stratiform type clouds. J Climate Appl Meteor, 1984, 23: 1585-1600. http://adsabs.harvard.edu/abs/1984JApMe..23.1585O
    [76]
    Farley R D, Orville H D. Numerical modeling of hailstorms and hailstone growth. Part Ⅰ: Preliminary model verification and sensitivity tests. J Climate Appl Meteor, 1986, 25: 2014-2035. http://adsabs.harvard.edu/abs/1986JApMe..25.2014F
    [77]
    Blumenstein R R, Rauber R M, Grant L O. Application of ice nucleation kinetics in orographic clouds. J Climate Appl Metor, 1987, 26: 1363-1376. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1987JApMe..26.1363B&db_key=PHY&link_type=EJOURNAL
    [78]
    Curie M, Janc D. Numerical study of the cloud seeding effects. Meteor Atmos Phys, 1990, 42: 145-164. DOI: 10.1007/BF01041762
    [79]
    Bigg E K.The Supercooling of Water//Proc Phys Soc.London, B66, 1953: 688-694.
    [80]
    Meyers M P, DeMott P J, Cotton W R. A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J Appl Meteor, 1995, 34: 834-846. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995JApMe..34..834M&db_key=PHY&link_type=ABSTRACT
    [81]
    Curic M, Janc D, Vuckovic V. Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model. Meteorol Atmos Phys, 2007, 95: 179-193. DOI: 10.1007/s00703-006-0202-y
    [82]
    Xue L L, and Coauthors. Implementation of a silver lodide cloud-seeding parameterization in WRF. Part Ⅰ: Model description and idealized 2D sensitivity tests. J Appl Meteor Climatol, 2013, 52: 1433-1457. http://www.researchgate.net/publication/258914100_Implementation_of_a_Silver_Iodide_Cloud-Seeding_Parameterization_in_WRF_Part_II_3D_Simulations_of_Actual_Seeding_Events_and_Sensitivity_Tests
    [83]
    Hashimoto A, Satake S, Kato K, et al.Numerical Simulation of the Ground-based AgI Seeding//Proceedings of the 2008 Autumn Meeting of the MSJ, B359, 2008.
    [84]
    黄燕, 徐华英. 播撒碘化银粒子进行人工防雹的数值试验. 大气科学, 1994, 18(5): 612-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK405.011.htm

    Huang Y, Xu H Y. Numerical experiments on hail suppression by AgI seeding. Chin J Atmos Sci, 1994, 18(5): 612-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK405.011.htm
    [85]
    孔凡铀, 黄美元, 徐华英. 对流云中冰相过程的三维数值模拟: (I)模式建立及冷云参数化, 大气科学, 1990, 14(4): 441-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199004006.htm

    Kong F Y, Huang M Y, Xu H Y. Three dimensional numerical simulation of ice processes in convective clouds: (I)model establishment and cold cloud parameterization. Chin J Atmos Sci, 1990, 14(4): 441-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199004006.htm
    [86]
    洪延超. 三维冰雹云催化数值模式. 气象学报, 1998, 56(6): 641-651. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB806.000.htm

    Hong Y C. A 3D hail cloud numerical seeding model. Acta Meteor Sinica, 1998, 56(6): 641-651. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB806.000.htm
    [87]
    李兴宇, 洪延超. 三维冰雹云数值催化模式改进与个例模拟研究. 气象学报, 2005, 63(6): 874-888. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200506004.htm

    Li X Y, Hong Y C. The improvement of 3D hail cloud model and case simulation. Acta Meteor Sinica, 2005, 63(6): 874-888. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200506004.htm
    [88]
    刘晓莉, 牛生杰, 陈跃. 层状云催化后过冷水分布与演变规律的数值模拟. 大气科学, 2006, 30(4): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604001.htm

    Liu X L, Niu S J, Chen Y. Numerical simulation of distribution and evolution of supercooled liquid water in seeding stratiform cloud. Chin J Atmos Sci, 2006, 30(4): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604001.htm
    [89]
    杨洁帆, 雷恒池. AgI焰剂对层状云催化的数值模拟. 气候与环境研究, 2010, 15(6): 705-717. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201006000.htm

    Yang J F, Lei H C. Simulation of AgI seeding on stritiform cloud with category model. Climatic and Environmental Research, 2010, 15(6): 705-717. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201006000.htm
    [90]
    方春刚, 郭学良, 王盘兴. 碘化银播撒对云和降水影响的中尺度数值模拟研究. 大气科学, 2009, 33(3): 621-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200903018.htm

    Fang C G, Guo X L, Wang P X. The physical and precipitation response to AgI seeding from a mesoscale WRF-based seeding model. Chin J Atmos Sci, 2009, 33(3): 621-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200903018.htm
    [91]
    何晖, 金华, 李宏宇, 等. 2008年奥运会开幕式日人工消减雨作业中尺度数值模拟的初步结果. 气候与环境研究, 2012, 17(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201201007.htm

    He H, Jin H, Li H Y, et al. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the opening ceremony of the 2008 Beijing Olympic Games. Climatic and Environmental Research, 2012, 17(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201201007.htm
    [92]
    何晖, 高茜, 李宏宇. 北京层状云人工增雨数值模拟试验和机理研究. 大气科学, 2013, 37(4): 905-922. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201304013.htm

    He H, Gao Q, Li H Y. Numerical simulation of stratiform precipitation enhancement in Beijing area and its mechanism. Chin J Atmos Sci, 2013, 37(4): 905-922. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201304013.htm
    [93]
    刘诗军, 胡志晋, 游来光. 碘化银核化过程的数值模拟研究. 气象学报, 2005, 63(1): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200501003.htm

    Liu S J, Hu Z J, You L G. The numerical simulation of AgI nucleation in cloud. Acta Meteor Sinica, 2005, 63(1): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200501003.htm
    [94]
    何观芳, 胡志晋. 人工影响积雨云机制的数值研究. 应用气象学报, 1991, 2(1): 32-39. http://qikan.camscma.cn/article/id/19910104

    He G F, Hu Z J. Numerical study on mechanism of artificial modification of cumulonimbus clouds. J Appl Meteor Sci, 1991, 2(1): 32-39. http://qikan.camscma.cn/article/id/19910104
    [95]
    于达维, 何观芳, 周勇, 等. 三维对流云催化模式及其外场试用. 应用气象学报, 2001, 12(增刊I): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1015.htm

    Yu D W, He G F, Zhou Y, et al. Three dimensional convective seeding model and its field applications. J Appl Meteor Sci, 2001, 12(Suppl I): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1015.htm
    [96]
    姚展予. 中国气象科学研究院人工影响天气研究进展回顾. 应用气象学报, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127

    Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
    [97]
    楼小凤, 何观芳, 胡志晋, 等. 三维对流云盐粉催化模式的发展和催化模拟试验. 高原气象, 2013, 32(2): 491-500. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201302016.htm

    Lou X F, He G F, Hu Z J, et al. Development of salt seeding scheme in 3D convective cloud model and seeding simulation. Plateau Meteorology, 2013, 32(2): 491-500. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201302016.htm
    [98]
    楼小凤, 师宇, 卢广献. 一次降雹过程的AgI系列催化模拟研究. 应用气象学报, 2016, 27(2): 129-139. DOI: 10.11898/1001-7313.20160201

    Lou X F, Shi Y, Lu G X. Numerical modeling of hailstorms with AgI seeding. J Appl Meteor Sci, 2016, 27(2): 129-139. DOI: 10.11898/1001-7313.20160201
    [99]
    楼小凤, 傅瑜, 孙晶. 一次浙江对流云催化数值模拟试验. 应用气象学报, 2019, 30(6): 665-676. DOI: 10.11898/1001-7313.20190603

    Lou X F, Fu Y, Sun J. Seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. DOI: 10.11898/1001-7313.20190603
    [100]
    刘卫国, 陶玥, 党娟, 等. 2014年春季华北两次降水过程的人工增雨催化数值模拟研究. 大气科学, 2016, 40(4): 669-688. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201604002.htm

    Liu W G, Tao Y, Dang J, et al. Seeding modeling study of two precipitation processes over northern China in the spring of 2014. Chin J Atmos Sci, 2016, 40(4): 669-688. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201604002.htm
    [101]
    苏正军, 郭学良, 诸葛杰, 等. 云雾物理膨胀云室研制及参数测试. 应用气象学报, 2019, 30(6): 722-730. DOI: 10.11898/1001-7313.20190608

    Su Z J, Guo X L, Zhu G J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. DOI: 10.11898/1001-7313.20190608

Catalog

    Tables(3)

    Article views2637 PDF downloads333 Cited by: 
    • Received : 2020-11-02
    • Accepted : 2021-01-17
    • Published : 2021-03-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return