Lou Xiaofeng, Fu Yu, Su Zhengjun. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. DOI:  10.11898/1001-7313.20210202.
Citation: Lou Xiaofeng, Fu Yu, Su Zhengjun. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. DOI:  10.11898/1001-7313.20210202.

Advances of Silver Iodide Seeding Agents for Weather Modification

DOI: 10.11898/1001-7313.20210202
  • Received Date: 2020-11-03
  • Rev Recd Date: 2021-01-18
  • Publish Date: 2021-03-31
  • Silver iodide (AgI) is the most widely-used seeding agent in field experiment and operations of weather modification. There are several nucleation modes for AgI seeding agents, and the nucleation process is affected by many factors including atmospheric temperature, humidity, particle size, composition of seeding agent and its particle generation method. The nucleation efficiency, nucleation modes affect the number of nucleated crystals, and thus affect the seeding effect.Through laboratory research of cloud chamber and theoretical calculation, the critical embryo sizes required for different nucleation mechanisms, nucleation threshold temperature, nucleation mechanisms, factors effecting nucleation for AgI and with some other added materials are analyzed. It is currently accepted that there are four nucleation mechanisms, including deposition, condensation freezing, contact freezing and immersion freezing nucleation. And it is recognized that nucleation processes depend on the varied temperature, humidity, and cloud conditions that can be encountered in the atmosphere. Immersion nucleation refers to nucleation of freezing by a particle immersed in water, and deposition nucleation refers to nucleation of the ice phase from the vapor, contact nucleation refers to the nucleation of the freezing induced by a particle during first contact with supercooled water, and condensation freezing is the nucleation of the freezing from the condensation of vapor to liquid droplet.The ice-nucleating properties and nucleation effectiveness of cloud seeding materials produced by burning acetone solutions or pyrotechnics of AgI and other materials are tested in a wind-tunnel cloud chamber test facility along with isothermal cloud chamber and dynamic cloud chamber. Through laboratory test, different formulations are compared, and high nucleation efficiency of seeding materials are selected, and nucleation features for four nucleation modes separately are obtained.Silver iodide seeding cloud model are based on a combination of theory and laboratory results. The ice nucleation schemes employed in cloud models vary widely. Hsie's seeding scheme simulated both contact-freezing and deposition nucleation on the laboratory measured effectiveness spectra of nucleus. Meyers seeding scheme considers all the four processes on cloud chamber results of ice-forming processes by AgI. In China, AgI seeding models are developed since the 1990s, either similar with Hsie's seeding scheme on three nucleation mechanisms, or similar with Meyers seeding scheme on four nucleation mechanisms.
  • Table  1  Temperatures of various materials being active as deposition or contact nuclei

    组分 核化机制 R/μm T/℃ 来源
    高岭石 接触冻结 0.1~30 -12~-5 文献[24]
    高岭石 凝华 0.5~3 -19 文献[25]
    蒙脱石 接触冻结 0.1~30 -8~-3 文献[24]
    蒙脱石 凝华 0.5~3 <-27 文献[25]
    CuS 接触冻结 ≤1 -6 文献[26]
    CdI2 接触冻结 ≤1 -12 文献[27]
    DownLoad: Download CSV

    Table  2  The order, cloud chambers and the assumptions of quantification of four nucleation mechanisms of hydrophobic AgI-AgCl and hygroscopic AgI-AgCl-4NaCl(from Reference [41-43])

    检测顺序 核化机制 云室类型 计算方法 假定条件
    1 凝华核化 膨胀云室 总冰晶数量 粒子面上均匀核化
    2 接触冻结核化 等温云室 总冰晶数量 云滴浓度稳定, 粒子浓度2100 cm-3或4300 cm-3主要考虑布朗运动造成气溶胶的清除
    3 浸没冻结核化 膨胀云室 总冰晶数量-凝华核化-接触冻结核化 利用绝热云模式计算水面过饱和度。CCN凝结形成云滴,与通过碰并过程浸没的气溶胶,同样发生浸没冻结
    4 凝结冻结核化 膨胀云室 总冰晶数量-接触-浸没-凝华 利用绝热云模式计算水面过饱和度
    DownLoad: Download CSV

    Table  3  Six formulations of AgI acetone solution (the amount of each component in 1 kg solution)

    序号 AgI/g NH4I/g 其他成分/g
    1 50 15.43
    2 50 NaI:15.96
    3 50 KI:17.67
    4 20 6.17 H2O:3.0
    NH4ClO4:3.0
    5 20 6.17 NH4ClO4:3.0
    NaClO4:41.72
    H2O:3.0
    6 20 6.17 BiI3:0.23
    DownLoad: Download CSV
  • [1]
    Schaefer V I.The production of ice crystals in a cloud of supercooled water droplets.Science,1946,104:457-459. doi:  10.1126/science.104.2707.457
    [2]
    Vonnegut B. The nucleation of ice formation by silver iodide. J Appl Phys, 1947, 18(7): 593-595. doi:  10.1063/1.1697813
    [3]
    Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. http://qikan.camscma.cn/article/id/200605109
    [4]
    Zheng G G, Guo X L. Status and development of sciences and technology for weather modification. Engineering Sciences, 2012, 14(9): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201209005.htm
    [5]
    Dennis A S. Weather Modification by Cloud Seeding. New York: Academic Press, 1980.
    [6]
    Wu D. Little effect on environment of rain enhancement seeding agents. Guangdong Meteorology, 2005(3): 16. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200503006.htm
    [7]
    Duan J, Lou X F, Wang H, et al. Research progress on impact of AgI in weather modification operations on environment in related areas. Meteor Mon, 2020, 46(2): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202002011.htm
    [8]
    Lou X F, Shi Y, Li J M. Development and application of the cloud and seeding models in weather modification. Advances in Meteorological Science and Technology, 2016, 6(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603018.htm
    [9]
    Committee on the Status of and Future Directions in US Weather Modification Research and Operations. Critical issues in Weather Modification Research. Washington DC: The National Academies Press, 2003.
    [10]
    Orville H D. A review of cloud modeling in weather modification. Bull Amer Meteor Soc, 1996, 77: 1535-1555. doi:  10.1175/1520-0477(1996)077<1535:AROCMI>2.0.CO;2
    [11]
    Vonnegut B. Nucleation of supercooled water clouds by silver iodide smokes. Chemical Reviews, 1949, 44(2): 277-289. doi:  10.1021/cr60138a003
    [12]
    Vonnegut B. Techniques for generating silver iodide smoke. J Colloida Interface Sci, 1950, 5(1): 37-48. doi:  10.1016/0095-8522(50)90004-3
    [13]
    Fletcher N H. On ice-crystal production by aerosol particles. J Meteor, 1959, 16: 173-180. doi:  10.1175/1520-0469(1959)016<0173:OICPBA>2.0.CO;2
    [14]
    Pruppacher H R, Klett J D. Microphysics of Clouds and Precipitation. Dordecht Holland, 1978.
    [15]
    Vali G, DeMott P J, Mohler O, et al. Technical note: A proposal for ice nucleation terminology. Atmos Chem Phys, 2015, 15: 10263-10270. doi:  10.5194/acp-15-10263-2015
    [16]
    Flecther N H. The Physics of Rain Clouds. Cambridge: Cambridge University Press, 1962.
    [17]
    Gokhale N R, Goold J. Droplet freezing by surface nucleation. J Appl Metor, 1968, 7: 870-874. doi:  10.1175/1520-0450(1968)007<0870:DFBSN>2.0.CO;2
    [18]
    Alkezweeny A J. On the activation temperature of AgI-particles in cloud. J Wea Mod, 1971, 3: 111-114.
    [19]
    Cooper W A. A possible mechanism for contact nucleation. J Atmos Sci, 1974, 31: 1832-1837. doi:  10.1175/1520-0469(1974)031<1832:APMFCN>2.0.CO;2
    [20]
    Edwards G R, Evans L F. Ice nucleation by silver iodide: I. Freezing vs sublimation. J Meteorol, 1960, 17: 627-634. doi:  10.1175/1520-0469(1960)017<0627:INBSII>2.0.CO;2
    [21]
    Langer G, Cooper G, Nagamoto C T, et al. Ice nucleation mechanisms of submicron monodispersed silver iodide, IS-Dihydro-xynaphthalene and phloroglucinol aerosol particles. J Appl Meteor, 1978, 17: 1039-1048. doi:  10.1175/1520-0450(1978)017<1039:INMOSM>2.0.CO;2
    [22]
    Edwards G R, Evans L F. Ice nucleation by silver iodide: Ⅲ. The nature of the nucleating site. J Atmos Sci, 1968, 25: 249-256. doi:  10.1175/1520-0469(1968)025<0249:INBSII>2.0.CO;2
    [23]
    Sax R J, Goldsmith P. Nucleation of water drops by Brownian contact with AgI and other aerosols. Quart J Roy Meteor Soc, 1972, 98: 60-72. doi:  10.1002/qj.49709841506
    [24]
    Pitter R L, Pruppacher H R. A wind tunnel investigation of freezing of small water droplets falling at terminal velocity in air. Quart J Roy Meteor Soc, 1973, 99: 540-550. doi:  10.1002/qj.49709942111
    [25]
    Roberts P, Hallett J. A laboratory study of ice nucleating properties of some mineral particulates. Quart J Roy Meteor Soc, 1968, 94: 25-34. doi:  10.1002/qj.49709439904
    [26]
    Levkov L. Congelation de gouttes d'eau au contact de particles de CuS. J Rech Atmos, 1971, 5: 133-136.
    [27]
    Mason B J, Van den Heuvel A P. The properties and behavior of some artificial ice nuclei. Proc Phys Soc London, 1959, 74: 744-755. doi:  10.1088/0370-1328/74/6/312
    [28]
    Marcolli C, Nagare B, Welti A, et al. Ice nucleation efficiency of AgI: Review and new insights. Atmos Chem Phys, 2016, 16: 8915-8937. doi:  10.5194/acp-16-8915-2016
    [29]
    Ladino L, Stetzer O, Lüönd F, et al. Contact freezing experiments of kaolinite particles with cloud droplets. J Geophys Res, 2011, 116, D22202. http://adsabs.harvard.edu/abs/2011JGRD..11622202L
    [30]
    Nagare B, Marcolli C, Stetzer O, et al. Comparison of measured and calculated collision efficiencies at low temperatures. Atmos Chem Phys, 2015, 15: 13759-13776. doi:  10.5194/acp-15-13759-2015
    [31]
    Welti A, Lüönd F, Kanji Z A, et al. Time dependence of immersion freezing: An experimental study on size selected kaolinite particles. Atmos Chem Phys, 2012, 12: 9893-9907. doi:  10.5194/acp-12-9893-2012
    [32]
    Lüönd F, Stetzer O, Welti A, et al. Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J Geophys Res, 2010, 115, D14201. doi:  10.1029/2009JD012959
    [33]
    Kohn M, Lohmann U, Welti A, et al. Immersion mode ice nucleation measurements with the new portable immersion mode cooling chamber (PIMCA). J Geophys Res Atmos, 2016, 121: 4713-4733. doi:  10.1002/2016JD024761
    [34]
    DeMott P J. Comparisons of the behavior of AgI-type ice nucleating aerosols in laboratory simulated, clouds. J Wea Mod, 1988, 20: 44-50. http://www.researchgate.net/publication/303174147_Comparisons_of_the_behavior_of_AgI-type_ice_nucleating_aerosols_in_laboratory-simulated_clouds
    [35]
    DeMott P J, Finnegan W G, Grant L O. An application of chemical kinetic theory and methodology to characterize the ice nucleating properties of aerosols used in weather modification. J Climate Appl Meteor, 1983, 22: 1190-1203. doi:  10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2
    [36]
    Finnegan W G, Pitter R L. Rapid ice nucleation by acetone-silver iodide generator aerosols. J Wea Mod, 1988, 20: 51-53. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Journal%20of%20Neurology%20Neurosurgery%20and%20Psychiatry&volume=81&issue=4&spage=428
    [37]
    Donnan J A, Blair D N, Finnegan W G, et al. Nucleation efficiencies of AgI-NH4I and AgI-NaI acetone solutions and pyrotechnic generators as a function of LWC and generator flame temperature, a preliminary REPORT. J Wea Mod, 1970, 2: 155-164.
    [38]
    Donnan J A, Blair D N, Wright D A. A wind tunnel/cloud chamber facility for cloud modification research. J Wea Mod, 1971, 3: 123-133.
    [39]
    Parungo F P. Electron-microscope study of silver iodide as contact or sublimation nuclei. J Appl Meteor, 1973, 12: 517-521. doi:  10.1175/1520-0450(1973)012<0517:EMSOSI>2.0.CO;2
    [40]
    Blair D N, Davis B L, Dennis A S. Cloud chamber tests of generators using acetone solutions of AgI-NaI, AgI-KI, and AgI-NH4I. J Appl Meteor, 1973, 12: 1012-1017. doi:  10.1175/1520-0450(1973)012<1012:CCTOGU>2.0.CO;2
    [41]
    DeMott P J, Rogers D C. Freezing nucleation rates of dilute solution droplets mersured between -30 and -40℃ in laboratory simulations of natural clouds. J Atmos Sci, 1990, 47: 1056-1064. doi:  10.1175/1520-0469(1990)047<1056:FNRODS>2.0.CO;2
    [42]
    DeMott P J. Quantifying Ice Nucleation by Silver Iodide Aerosols. Fort Collins: Colorado State University, 1990.
    [43]
    DeMott P J. Quantitative descriptions of ice formation mechanisms of silver iodide type aerosols. Atmos Res, 1995, 38: 63-99. doi:  10.1016/0169-8095(94)00088-U
    [44]
    The measurement group of nucleation efficiency. Measurement of ice nucleation efficiency of 37 silver iodide shell. Meteor Mon, 1975(1): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197501006.htm
    [45]
    Mo T L, Zhang R L, Lei L K, et al. An improved test of rain-shell materials for artificial ice nuclei. Journal of the Meteorological Sciences, 1980(1): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX1980Z1009.htm
    [46]
    Chen R Z, Feng D X. The examination of the ice nucleating efficiency of AgI in the JBR-56 rockets. Acta Meteor Sinica, 1985, 43(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198501002.htm
    [47]
    Mason B J. The Physics of Clouds. Oxford: Oxford University Press, 1971.
    [48]
    Feng D X, Chen R Z, Jiang G W, et al. The high efficient AgI pyrotechnics and their ice nucleating properties. Acta Meteor Sinica, 1995, 53(1): 83-90.
    [49]
    Feng D X, Wang Y Q, Chen R Z, et al. A 2 m3 isothermal cloud chamber for the study of artificial ice nuclei. Acta Meteor Sinica, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm
    [50]
    Feng D, Finnegan W G. An efficient, fast functioning nucleating agent-AgI-AgCl-NaCl. J Wea Mod, 1989, 21: 41-45. http://www.weathermodification.org/publications/index.php/JWM/article/viewArticle/355
    [51]
    Feng D X. The generation of ice nucleus aerosols by burning AgI-acetone solution. Meteor Mon, 1991, 17(3): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199103001.htm
    [52]
    Amand P, Finnegan W G, Burkardt L. Understanding of the use of simple and complex ice nuclei generated from pyrotechnics and acetone burners. J Wea Mod, 1971, 3: 31-48.
    [53]
    Sax R I, Garvey D M, Purungo F P. Characteristics of AgI pyrotechnic nucleant used in NOAA's Florida Arca Cumulus Experiment. J Appl Meteor, 1979, 18: 195-202. doi:  10.1175/1520-0450(1979)018<0195:COAPNU>2.0.CO;2
    [54]
    Scott P T, Finnegan W G, Sinclair P C. Characterization of a modified hexagonal silver iodide ice nucleus aerosol. J Appl Meteor, 1989, 28: 722-726. doi:  10.1175/1520-0450(1989)028<0722:COAMHS>2.0.CO;2
    [55]
    Su Z J, Zheng G G, Guan L Y, et al. A new 1 m3 isothermal cloud chamber for the study of artificial ice nuclei. Plateau Meteorology, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm
    [56]
    Su Z J, Zheng G G, Guan L Y. Experimental study on nucleation rate of artificial ice nuclei. Meteor Mon, 2010, 36(11): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011010.htm
    [57]
    You L G, Wang G H, Feng D X. Cloud seeding technique system for precipitation enhancement. Annual Report of CAMS, 2000(1): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQKN200000016.htm
    [58]
    Su Z J, Zheng G G, Guan L Y, et al. Particle sizing analysis on AgI pyrotechnics with the electron microscope. J Appl Meteor Sci, 2008, 19(2): 137-144. http://qikan.camscma.cn/article/id/20080226
    [59]
    Kong J, Wang G H, Fang W, et al. Laboratory study on nucleating properties and microstructure of AgI pyrotechnics. Meteor Mon, 2016, 42(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601009.htm
    [60]
    Yang S Z, Lou X F, Huang G, et al. A 15 L mixing cloud chamber for testing ice nuclei. J Appl Meteor Sci, 2007, 18(5): 716-728. http://qikan.camscma.cn/article/id/200705108
    [61]
    Yang S Z, Lou X F, Feng D X, et al. Improvement test on nucleation efficiency of 37 silver iodide shell. Acta Meteor Sinica, 2005, 63(Suppl Ⅰ): 56-62.
    [62]
    Dang J, Su Z J, Fang W, et al. The experiment of ice nucleus generating efficiency by model 37 silver iodide shell. J Appl Meteor Sci, 2016, 27(2): 140-147. doi:  10.11898/1001-7313.20160202
    [63]
    Jin D Z, Zhang J H, Jiang Z H, et al. Application of nano-AgI catalyst in weather modifcation. I: Result of theoretical analysis and prospect. Climatic and Environmental Research, 2012, 17(6): 666-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206003.htm
    [64]
    Alkezweeny A J. A contact nucleation model for seeded clouds. J Appl Meteor, 1971, 10: 732-738. http://adsabs.harvard.edu/abs/1971JApMe..10..732A
    [65]
    Plooster M N, Fukuta N. A numerical model of precipitation from seeded and unseeded cold orographic clouds. J Appl Meteor, 1975, 14: 859-867. http://adsabs.harvard.edu/abs/1975JApMe..14..859P
    [66]
    Yong K C. A numerical simulation of wintertime, orographic precipitation: PartⅠ. Description of model microphysics and numerical techniques. J Atmos Sci, 1974, 31: 1735-1748. http://adsabs.harvard.edu/abs/1974JAtS...31.1735Y
    [67]
    Yong K C. The role of contact nucleation in ice phase initiation in clouds. J Atmos Sci, 1974, 31: 768-776. http://adsabs.harvard.edu/abs/1974jats...31..768y
    [68]
    Gokhale N R, Spengler J D. Freezing of freely suspended supercooled water drops by contact nucleation. J Appl Meteor, 1972, 11: 157-160. http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1972JApMe..11..157G
    [69]
    Mason B J, Van den Heuvel A P. The properties and behavior of some artificial ice nuclei. Proc Phys Soc, 1959, 79: 104-111. http://adsabs.harvard.edu/abs/1959PPS....74..744M
    [70]
    Vali G.Remarks on the Mechanism of Atmospheric Ice Nucleation//Proc 8th Intern Conf Nucleation, 1973: 23-29.
    [71]
    Hsie E Y, Farley R D, Orville H D. Numerical simulation of ice-phase convective cloud seeding. J Appl Meteor, 1980, 19: 626-641. http://adsabs.harvard.edu/abs/1980japme..19..950h
    [72]
    Orville H D, Kopp F J. Numerical simulation of the life history of a hailstorm. J Atmos Sci, 1977, 34: 1596-1618. http://adsabs.harvard.edu/abs/1977JAtS...34.1596O
    [73]
    Chen C S, Orville H D. The effects of carbo black dust on cumulus scale convection. J Appl Meteor, 1977, 16: 401-412. http://adsabs.harvard.edu/abs/1977JApMe..16..401C
    [74]
    Orville H D, Kopp F J. Numerical Simulation of Cloud Seeding Experiments//Preprints, 4th Conf Weather Modification. Amer Meteor Soc, 1974: 28-35.
    [75]
    Orville H D, Farley R D, Hirse J H. Some surprising results from simulated seeding of stratiform type clouds. J Climate Appl Meteor, 1984, 23: 1585-1600. http://adsabs.harvard.edu/abs/1984JApMe..23.1585O
    [76]
    Farley R D, Orville H D. Numerical modeling of hailstorms and hailstone growth. Part Ⅰ: Preliminary model verification and sensitivity tests. J Climate Appl Meteor, 1986, 25: 2014-2035. http://adsabs.harvard.edu/abs/1986JApMe..25.2014F
    [77]
    Blumenstein R R, Rauber R M, Grant L O. Application of ice nucleation kinetics in orographic clouds. J Climate Appl Metor, 1987, 26: 1363-1376. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1987JApMe..26.1363B&db_key=PHY&link_type=EJOURNAL
    [78]
    Curie M, Janc D. Numerical study of the cloud seeding effects. Meteor Atmos Phys, 1990, 42: 145-164. doi:  10.1007/BF01041762
    [79]
    Bigg E K.The Supercooling of Water//Proc Phys Soc.London, B66, 1953: 688-694.
    [80]
    Meyers M P, DeMott P J, Cotton W R. A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J Appl Meteor, 1995, 34: 834-846. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995JApMe..34..834M&db_key=PHY&link_type=ABSTRACT
    [81]
    Curic M, Janc D, Vuckovic V. Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model. Meteorol Atmos Phys, 2007, 95: 179-193. doi:  10.1007/s00703-006-0202-y
    [82]
    Xue L L, and Coauthors. Implementation of a silver lodide cloud-seeding parameterization in WRF. Part Ⅰ: Model description and idealized 2D sensitivity tests. J Appl Meteor Climatol, 2013, 52: 1433-1457. http://www.researchgate.net/publication/258914100_Implementation_of_a_Silver_Iodide_Cloud-Seeding_Parameterization_in_WRF_Part_II_3D_Simulations_of_Actual_Seeding_Events_and_Sensitivity_Tests
    [83]
    Hashimoto A, Satake S, Kato K, et al.Numerical Simulation of the Ground-based AgI Seeding//Proceedings of the 2008 Autumn Meeting of the MSJ, B359, 2008.
    [84]
    Huang Y, Xu H Y. Numerical experiments on hail suppression by AgI seeding. Chin J Atmos Sci, 1994, 18(5): 612-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK405.011.htm
    [85]
    Kong F Y, Huang M Y, Xu H Y. Three dimensional numerical simulation of ice processes in convective clouds: (I)model establishment and cold cloud parameterization. Chin J Atmos Sci, 1990, 14(4): 441-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199004006.htm
    [86]
    Hong Y C. A 3D hail cloud numerical seeding model. Acta Meteor Sinica, 1998, 56(6): 641-651. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB806.000.htm
    [87]
    Li X Y, Hong Y C. The improvement of 3D hail cloud model and case simulation. Acta Meteor Sinica, 2005, 63(6): 874-888. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200506004.htm
    [88]
    Liu X L, Niu S J, Chen Y. Numerical simulation of distribution and evolution of supercooled liquid water in seeding stratiform cloud. Chin J Atmos Sci, 2006, 30(4): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604001.htm
    [89]
    Yang J F, Lei H C. Simulation of AgI seeding on stritiform cloud with category model. Climatic and Environmental Research, 2010, 15(6): 705-717. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201006000.htm
    [90]
    Fang C G, Guo X L, Wang P X. The physical and precipitation response to AgI seeding from a mesoscale WRF-based seeding model. Chin J Atmos Sci, 2009, 33(3): 621-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200903018.htm
    [91]
    He H, Jin H, Li H Y, et al. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the opening ceremony of the 2008 Beijing Olympic Games. Climatic and Environmental Research, 2012, 17(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201201007.htm
    [92]
    He H, Gao Q, Li H Y. Numerical simulation of stratiform precipitation enhancement in Beijing area and its mechanism. Chin J Atmos Sci, 2013, 37(4): 905-922. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201304013.htm
    [93]
    Liu S J, Hu Z J, You L G. The numerical simulation of AgI nucleation in cloud. Acta Meteor Sinica, 2005, 63(1): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200501003.htm
    [94]
    He G F, Hu Z J. Numerical study on mechanism of artificial modification of cumulonimbus clouds. J Appl Meteor Sci, 1991, 2(1): 32-39. http://qikan.camscma.cn/article/id/19910104
    [95]
    Yu D W, He G F, Zhou Y, et al. Three dimensional convective seeding model and its field applications. J Appl Meteor Sci, 2001, 12(Suppl I): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1015.htm
    [96]
    Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
    [97]
    Lou X F, He G F, Hu Z J, et al. Development of salt seeding scheme in 3D convective cloud model and seeding simulation. Plateau Meteorology, 2013, 32(2): 491-500. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201302016.htm
    [98]
    Lou X F, Shi Y, Lu G X. Numerical modeling of hailstorms with AgI seeding. J Appl Meteor Sci, 2016, 27(2): 129-139. doi:  10.11898/1001-7313.20160201
    [99]
    Lou X F, Fu Y, Sun J. Seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. doi:  10.11898/1001-7313.20190603
    [100]
    Liu W G, Tao Y, Dang J, et al. Seeding modeling study of two precipitation processes over northern China in the spring of 2014. Chin J Atmos Sci, 2016, 40(4): 669-688. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201604002.htm
    [101]
    Su Z J, Guo X L, Zhu G J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi:  10.11898/1001-7313.20190608
  • 加载中
  • -->

Catalog

    Tables(3)

    Article views (2197) PDF downloads(262) Cited by()
    • Received : 2020-11-03
    • Accepted : 2021-01-18
    • Published : 2021-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint