Citation: | Lou Xiaofeng, Fu Yu, Su Zhengjun. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. DOI: 10.11898/1001-7313.20210202. |
Table 1 Temperatures of various materials being active as deposition or contact nuclei
Table 2 The order, cloud chambers and the assumptions of quantification of four nucleation mechanisms of hydrophobic AgI-AgCl and hygroscopic AgI-AgCl-4NaCl(from Reference [41-43])
检测顺序 | 核化机制 | 云室类型 | 计算方法 | 假定条件 |
1 | 凝华核化 | 膨胀云室 | 总冰晶数量 | 粒子面上均匀核化 |
2 | 接触冻结核化 | 等温云室 | 总冰晶数量 | 云滴浓度稳定, 粒子浓度2100 cm-3或4300 cm-3主要考虑布朗运动造成气溶胶的清除 |
3 | 浸没冻结核化 | 膨胀云室 | 总冰晶数量-凝华核化-接触冻结核化 | 利用绝热云模式计算水面过饱和度。CCN凝结形成云滴,与通过碰并过程浸没的气溶胶,同样发生浸没冻结 |
4 | 凝结冻结核化 | 膨胀云室 | 总冰晶数量-接触-浸没-凝华 | 利用绝热云模式计算水面过饱和度 |
Table 3 Six formulations of AgI acetone solution (the amount of each component in 1 kg solution)
序号 | AgI/g | NH4I/g | 其他成分/g |
1 | 50 | 15.43 | |
2 | 50 | NaI:15.96 | |
3 | 50 | KI:17.67 | |
4 | 20 | 6.17 | H2O:3.0 NH4ClO4:3.0 |
5 | 20 | 6.17 | NH4ClO4:3.0 NaClO4:41.72 H2O:3.0 |
6 | 20 | 6.17 | BiI3:0.23 |
[1] |
Schaefer V I.The production of ice crystals in a cloud of supercooled water droplets.Science,1946,104:457-459. doi: 10.1126/science.104.2707.457
|
[2] |
Vonnegut B. The nucleation of ice formation by silver iodide. J Appl Phys, 1947, 18(7): 593-595. doi: 10.1063/1.1697813
|
[3] |
Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. http://qikan.camscma.cn/article/id/200605109
|
[4] |
Zheng G G, Guo X L. Status and development of sciences and technology for weather modification. Engineering Sciences, 2012, 14(9): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201209005.htm
|
[5] |
Dennis A S. Weather Modification by Cloud Seeding. New York: Academic Press, 1980.
|
[6] |
Wu D. Little effect on environment of rain enhancement seeding agents. Guangdong Meteorology, 2005(3): 16. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200503006.htm
|
[7] |
Duan J, Lou X F, Wang H, et al. Research progress on impact of AgI in weather modification operations on environment in related areas. Meteor Mon, 2020, 46(2): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202002011.htm
|
[8] |
Lou X F, Shi Y, Li J M. Development and application of the cloud and seeding models in weather modification. Advances in Meteorological Science and Technology, 2016, 6(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201603018.htm
|
[9] |
Committee on the Status of and Future Directions in US Weather Modification Research and Operations. Critical issues in Weather Modification Research. Washington DC: The National Academies Press, 2003.
|
[10] |
Orville H D. A review of cloud modeling in weather modification. Bull Amer Meteor Soc, 1996, 77: 1535-1555. doi: 10.1175/1520-0477(1996)077<1535:AROCMI>2.0.CO;2
|
[11] |
Vonnegut B. Nucleation of supercooled water clouds by silver iodide smokes. Chemical Reviews, 1949, 44(2): 277-289. doi: 10.1021/cr60138a003
|
[12] |
Vonnegut B. Techniques for generating silver iodide smoke. J Colloida Interface Sci, 1950, 5(1): 37-48. doi: 10.1016/0095-8522(50)90004-3
|
[13] |
Fletcher N H. On ice-crystal production by aerosol particles. J Meteor, 1959, 16: 173-180. doi: 10.1175/1520-0469(1959)016<0173:OICPBA>2.0.CO;2
|
[14] |
Pruppacher H R, Klett J D. Microphysics of Clouds and Precipitation. Dordecht Holland, 1978.
|
[15] |
Vali G, DeMott P J, Mohler O, et al. Technical note: A proposal for ice nucleation terminology. Atmos Chem Phys, 2015, 15: 10263-10270. doi: 10.5194/acp-15-10263-2015
|
[16] |
Flecther N H. The Physics of Rain Clouds. Cambridge: Cambridge University Press, 1962.
|
[17] |
Gokhale N R, Goold J. Droplet freezing by surface nucleation. J Appl Metor, 1968, 7: 870-874. doi: 10.1175/1520-0450(1968)007<0870:DFBSN>2.0.CO;2
|
[18] |
Alkezweeny A J. On the activation temperature of AgI-particles in cloud. J Wea Mod, 1971, 3: 111-114.
|
[19] |
Cooper W A. A possible mechanism for contact nucleation. J Atmos Sci, 1974, 31: 1832-1837. doi: 10.1175/1520-0469(1974)031<1832:APMFCN>2.0.CO;2
|
[20] |
Edwards G R, Evans L F. Ice nucleation by silver iodide: I. Freezing vs sublimation. J Meteorol, 1960, 17: 627-634. doi: 10.1175/1520-0469(1960)017<0627:INBSII>2.0.CO;2
|
[21] |
Langer G, Cooper G, Nagamoto C T, et al. Ice nucleation mechanisms of submicron monodispersed silver iodide, IS-Dihydro-xynaphthalene and phloroglucinol aerosol particles. J Appl Meteor, 1978, 17: 1039-1048. doi: 10.1175/1520-0450(1978)017<1039:INMOSM>2.0.CO;2
|
[22] |
Edwards G R, Evans L F. Ice nucleation by silver iodide: Ⅲ. The nature of the nucleating site. J Atmos Sci, 1968, 25: 249-256. doi: 10.1175/1520-0469(1968)025<0249:INBSII>2.0.CO;2
|
[23] |
Sax R J, Goldsmith P. Nucleation of water drops by Brownian contact with AgI and other aerosols. Quart J Roy Meteor Soc, 1972, 98: 60-72. doi: 10.1002/qj.49709841506
|
[24] |
Pitter R L, Pruppacher H R. A wind tunnel investigation of freezing of small water droplets falling at terminal velocity in air. Quart J Roy Meteor Soc, 1973, 99: 540-550. doi: 10.1002/qj.49709942111
|
[25] |
Roberts P, Hallett J. A laboratory study of ice nucleating properties of some mineral particulates. Quart J Roy Meteor Soc, 1968, 94: 25-34. doi: 10.1002/qj.49709439904
|
[26] |
Levkov L. Congelation de gouttes d'eau au contact de particles de CuS. J Rech Atmos, 1971, 5: 133-136.
|
[27] |
Mason B J, Van den Heuvel A P. The properties and behavior of some artificial ice nuclei. Proc Phys Soc London, 1959, 74: 744-755. doi: 10.1088/0370-1328/74/6/312
|
[28] |
Marcolli C, Nagare B, Welti A, et al. Ice nucleation efficiency of AgI: Review and new insights. Atmos Chem Phys, 2016, 16: 8915-8937. doi: 10.5194/acp-16-8915-2016
|
[29] |
Ladino L, Stetzer O, Lüönd F, et al. Contact freezing experiments of kaolinite particles with cloud droplets. J Geophys Res, 2011, 116, D22202. http://adsabs.harvard.edu/abs/2011JGRD..11622202L
|
[30] |
Nagare B, Marcolli C, Stetzer O, et al. Comparison of measured and calculated collision efficiencies at low temperatures. Atmos Chem Phys, 2015, 15: 13759-13776. doi: 10.5194/acp-15-13759-2015
|
[31] |
Welti A, Lüönd F, Kanji Z A, et al. Time dependence of immersion freezing: An experimental study on size selected kaolinite particles. Atmos Chem Phys, 2012, 12: 9893-9907. doi: 10.5194/acp-12-9893-2012
|
[32] |
Lüönd F, Stetzer O, Welti A, et al. Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J Geophys Res, 2010, 115, D14201. doi: 10.1029/2009JD012959
|
[33] |
Kohn M, Lohmann U, Welti A, et al. Immersion mode ice nucleation measurements with the new portable immersion mode cooling chamber (PIMCA). J Geophys Res Atmos, 2016, 121: 4713-4733. doi: 10.1002/2016JD024761
|
[34] |
DeMott P J. Comparisons of the behavior of AgI-type ice nucleating aerosols in laboratory simulated, clouds. J Wea Mod, 1988, 20: 44-50. http://www.researchgate.net/publication/303174147_Comparisons_of_the_behavior_of_AgI-type_ice_nucleating_aerosols_in_laboratory-simulated_clouds
|
[35] |
DeMott P J, Finnegan W G, Grant L O. An application of chemical kinetic theory and methodology to characterize the ice nucleating properties of aerosols used in weather modification. J Climate Appl Meteor, 1983, 22: 1190-1203. doi: 10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2
|
[36] |
Finnegan W G, Pitter R L. Rapid ice nucleation by acetone-silver iodide generator aerosols. J Wea Mod, 1988, 20: 51-53. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Journal%20of%20Neurology%20Neurosurgery%20and%20Psychiatry&volume=81&issue=4&spage=428
|
[37] |
Donnan J A, Blair D N, Finnegan W G, et al. Nucleation efficiencies of AgI-NH4I and AgI-NaI acetone solutions and pyrotechnic generators as a function of LWC and generator flame temperature, a preliminary REPORT. J Wea Mod, 1970, 2: 155-164.
|
[38] |
Donnan J A, Blair D N, Wright D A. A wind tunnel/cloud chamber facility for cloud modification research. J Wea Mod, 1971, 3: 123-133.
|
[39] |
Parungo F P. Electron-microscope study of silver iodide as contact or sublimation nuclei. J Appl Meteor, 1973, 12: 517-521. doi: 10.1175/1520-0450(1973)012<0517:EMSOSI>2.0.CO;2
|
[40] |
Blair D N, Davis B L, Dennis A S. Cloud chamber tests of generators using acetone solutions of AgI-NaI, AgI-KI, and AgI-NH4I. J Appl Meteor, 1973, 12: 1012-1017. doi: 10.1175/1520-0450(1973)012<1012:CCTOGU>2.0.CO;2
|
[41] |
DeMott P J, Rogers D C. Freezing nucleation rates of dilute solution droplets mersured between -30 and -40℃ in laboratory simulations of natural clouds. J Atmos Sci, 1990, 47: 1056-1064. doi: 10.1175/1520-0469(1990)047<1056:FNRODS>2.0.CO;2
|
[42] |
DeMott P J. Quantifying Ice Nucleation by Silver Iodide Aerosols. Fort Collins: Colorado State University, 1990.
|
[43] |
DeMott P J. Quantitative descriptions of ice formation mechanisms of silver iodide type aerosols. Atmos Res, 1995, 38: 63-99. doi: 10.1016/0169-8095(94)00088-U
|
[44] |
The measurement group of nucleation efficiency. Measurement of ice nucleation efficiency of 37 silver iodide shell. Meteor Mon, 1975(1): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197501006.htm
|
[45] |
Mo T L, Zhang R L, Lei L K, et al. An improved test of rain-shell materials for artificial ice nuclei. Journal of the Meteorological Sciences, 1980(1): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX1980Z1009.htm
|
[46] |
Chen R Z, Feng D X. The examination of the ice nucleating efficiency of AgI in the JBR-56 rockets. Acta Meteor Sinica, 1985, 43(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198501002.htm
|
[47] |
Mason B J. The Physics of Clouds. Oxford: Oxford University Press, 1971.
|
[48] |
Feng D X, Chen R Z, Jiang G W, et al. The high efficient AgI pyrotechnics and their ice nucleating properties. Acta Meteor Sinica, 1995, 53(1): 83-90.
|
[49] |
Feng D X, Wang Y Q, Chen R Z, et al. A 2 m3 isothermal cloud chamber for the study of artificial ice nuclei. Acta Meteor Sinica, 1990, 48(1): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199001008.htm
|
[50] |
Feng D, Finnegan W G. An efficient, fast functioning nucleating agent-AgI-AgCl-NaCl. J Wea Mod, 1989, 21: 41-45. http://www.weathermodification.org/publications/index.php/JWM/article/viewArticle/355
|
[51] |
Feng D X. The generation of ice nucleus aerosols by burning AgI-acetone solution. Meteor Mon, 1991, 17(3): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199103001.htm
|
[52] |
Amand P, Finnegan W G, Burkardt L. Understanding of the use of simple and complex ice nuclei generated from pyrotechnics and acetone burners. J Wea Mod, 1971, 3: 31-48.
|
[53] |
Sax R I, Garvey D M, Purungo F P. Characteristics of AgI pyrotechnic nucleant used in NOAA's Florida Arca Cumulus Experiment. J Appl Meteor, 1979, 18: 195-202. doi: 10.1175/1520-0450(1979)018<0195:COAPNU>2.0.CO;2
|
[54] |
Scott P T, Finnegan W G, Sinclair P C. Characterization of a modified hexagonal silver iodide ice nucleus aerosol. J Appl Meteor, 1989, 28: 722-726. doi: 10.1175/1520-0450(1989)028<0722:COAMHS>2.0.CO;2
|
[55] |
Su Z J, Zheng G G, Guan L Y, et al. A new 1 m3 isothermal cloud chamber for the study of artificial ice nuclei. Plateau Meteorology, 2009, 28(4): 827-835. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200904014.htm
|
[56] |
Su Z J, Zheng G G, Guan L Y. Experimental study on nucleation rate of artificial ice nuclei. Meteor Mon, 2010, 36(11): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201011010.htm
|
[57] |
You L G, Wang G H, Feng D X. Cloud seeding technique system for precipitation enhancement. Annual Report of CAMS, 2000(1): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQKN200000016.htm
|
[58] |
Su Z J, Zheng G G, Guan L Y, et al. Particle sizing analysis on AgI pyrotechnics with the electron microscope. J Appl Meteor Sci, 2008, 19(2): 137-144. http://qikan.camscma.cn/article/id/20080226
|
[59] |
Kong J, Wang G H, Fang W, et al. Laboratory study on nucleating properties and microstructure of AgI pyrotechnics. Meteor Mon, 2016, 42(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601009.htm
|
[60] |
Yang S Z, Lou X F, Huang G, et al. A 15 L mixing cloud chamber for testing ice nuclei. J Appl Meteor Sci, 2007, 18(5): 716-728. http://qikan.camscma.cn/article/id/200705108
|
[61] |
Yang S Z, Lou X F, Feng D X, et al. Improvement test on nucleation efficiency of 37 silver iodide shell. Acta Meteor Sinica, 2005, 63(Suppl Ⅰ): 56-62.
|
[62] |
Dang J, Su Z J, Fang W, et al. The experiment of ice nucleus generating efficiency by model 37 silver iodide shell. J Appl Meteor Sci, 2016, 27(2): 140-147. doi: 10.11898/1001-7313.20160202
|
[63] |
Jin D Z, Zhang J H, Jiang Z H, et al. Application of nano-AgI catalyst in weather modifcation. I: Result of theoretical analysis and prospect. Climatic and Environmental Research, 2012, 17(6): 666-670. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206003.htm
|
[64] |
Alkezweeny A J. A contact nucleation model for seeded clouds. J Appl Meteor, 1971, 10: 732-738. http://adsabs.harvard.edu/abs/1971JApMe..10..732A
|
[65] |
Plooster M N, Fukuta N. A numerical model of precipitation from seeded and unseeded cold orographic clouds. J Appl Meteor, 1975, 14: 859-867. http://adsabs.harvard.edu/abs/1975JApMe..14..859P
|
[66] |
Yong K C. A numerical simulation of wintertime, orographic precipitation: PartⅠ. Description of model microphysics and numerical techniques. J Atmos Sci, 1974, 31: 1735-1748. http://adsabs.harvard.edu/abs/1974JAtS...31.1735Y
|
[67] |
Yong K C. The role of contact nucleation in ice phase initiation in clouds. J Atmos Sci, 1974, 31: 768-776. http://adsabs.harvard.edu/abs/1974jats...31..768y
|
[68] |
Gokhale N R, Spengler J D. Freezing of freely suspended supercooled water drops by contact nucleation. J Appl Meteor, 1972, 11: 157-160. http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1972JApMe..11..157G
|
[69] |
Mason B J, Van den Heuvel A P. The properties and behavior of some artificial ice nuclei. Proc Phys Soc, 1959, 79: 104-111. http://adsabs.harvard.edu/abs/1959PPS....74..744M
|
[70] |
Vali G.Remarks on the Mechanism of Atmospheric Ice Nucleation//Proc 8th Intern Conf Nucleation, 1973: 23-29.
|
[71] |
Hsie E Y, Farley R D, Orville H D. Numerical simulation of ice-phase convective cloud seeding. J Appl Meteor, 1980, 19: 626-641. http://adsabs.harvard.edu/abs/1980japme..19..950h
|
[72] |
Orville H D, Kopp F J. Numerical simulation of the life history of a hailstorm. J Atmos Sci, 1977, 34: 1596-1618. http://adsabs.harvard.edu/abs/1977JAtS...34.1596O
|
[73] |
Chen C S, Orville H D. The effects of carbo black dust on cumulus scale convection. J Appl Meteor, 1977, 16: 401-412. http://adsabs.harvard.edu/abs/1977JApMe..16..401C
|
[74] |
Orville H D, Kopp F J. Numerical Simulation of Cloud Seeding Experiments//Preprints, 4th Conf Weather Modification. Amer Meteor Soc, 1974: 28-35.
|
[75] |
Orville H D, Farley R D, Hirse J H. Some surprising results from simulated seeding of stratiform type clouds. J Climate Appl Meteor, 1984, 23: 1585-1600. http://adsabs.harvard.edu/abs/1984JApMe..23.1585O
|
[76] |
Farley R D, Orville H D. Numerical modeling of hailstorms and hailstone growth. Part Ⅰ: Preliminary model verification and sensitivity tests. J Climate Appl Meteor, 1986, 25: 2014-2035. http://adsabs.harvard.edu/abs/1986JApMe..25.2014F
|
[77] |
Blumenstein R R, Rauber R M, Grant L O. Application of ice nucleation kinetics in orographic clouds. J Climate Appl Metor, 1987, 26: 1363-1376. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1987JApMe..26.1363B&db_key=PHY&link_type=EJOURNAL
|
[78] |
Curie M, Janc D. Numerical study of the cloud seeding effects. Meteor Atmos Phys, 1990, 42: 145-164. doi: 10.1007/BF01041762
|
[79] |
Bigg E K.The Supercooling of Water//Proc Phys Soc.London, B66, 1953: 688-694.
|
[80] |
Meyers M P, DeMott P J, Cotton W R. A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J Appl Meteor, 1995, 34: 834-846. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995JApMe..34..834M&db_key=PHY&link_type=ABSTRACT
|
[81] |
Curic M, Janc D, Vuckovic V. Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model. Meteorol Atmos Phys, 2007, 95: 179-193. doi: 10.1007/s00703-006-0202-y
|
[82] |
Xue L L, and Coauthors. Implementation of a silver lodide cloud-seeding parameterization in WRF. Part Ⅰ: Model description and idealized 2D sensitivity tests. J Appl Meteor Climatol, 2013, 52: 1433-1457. http://www.researchgate.net/publication/258914100_Implementation_of_a_Silver_Iodide_Cloud-Seeding_Parameterization_in_WRF_Part_II_3D_Simulations_of_Actual_Seeding_Events_and_Sensitivity_Tests
|
[83] |
Hashimoto A, Satake S, Kato K, et al.Numerical Simulation of the Ground-based AgI Seeding//Proceedings of the 2008 Autumn Meeting of the MSJ, B359, 2008.
|
[84] |
Huang Y, Xu H Y. Numerical experiments on hail suppression by AgI seeding. Chin J Atmos Sci, 1994, 18(5): 612-622. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK405.011.htm
|
[85] |
Kong F Y, Huang M Y, Xu H Y. Three dimensional numerical simulation of ice processes in convective clouds: (I)model establishment and cold cloud parameterization. Chin J Atmos Sci, 1990, 14(4): 441-453. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199004006.htm
|
[86] |
Hong Y C. A 3D hail cloud numerical seeding model. Acta Meteor Sinica, 1998, 56(6): 641-651. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB806.000.htm
|
[87] |
Li X Y, Hong Y C. The improvement of 3D hail cloud model and case simulation. Acta Meteor Sinica, 2005, 63(6): 874-888. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200506004.htm
|
[88] |
Liu X L, Niu S J, Chen Y. Numerical simulation of distribution and evolution of supercooled liquid water in seeding stratiform cloud. Chin J Atmos Sci, 2006, 30(4): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604001.htm
|
[89] |
Yang J F, Lei H C. Simulation of AgI seeding on stritiform cloud with category model. Climatic and Environmental Research, 2010, 15(6): 705-717. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201006000.htm
|
[90] |
Fang C G, Guo X L, Wang P X. The physical and precipitation response to AgI seeding from a mesoscale WRF-based seeding model. Chin J Atmos Sci, 2009, 33(3): 621-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200903018.htm
|
[91] |
He H, Jin H, Li H Y, et al. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the opening ceremony of the 2008 Beijing Olympic Games. Climatic and Environmental Research, 2012, 17(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201201007.htm
|
[92] |
He H, Gao Q, Li H Y. Numerical simulation of stratiform precipitation enhancement in Beijing area and its mechanism. Chin J Atmos Sci, 2013, 37(4): 905-922. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201304013.htm
|
[93] |
Liu S J, Hu Z J, You L G. The numerical simulation of AgI nucleation in cloud. Acta Meteor Sinica, 2005, 63(1): 30-40. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200501003.htm
|
[94] |
He G F, Hu Z J. Numerical study on mechanism of artificial modification of cumulonimbus clouds. J Appl Meteor Sci, 1991, 2(1): 32-39. http://qikan.camscma.cn/article/id/19910104
|
[95] |
Yu D W, He G F, Zhou Y, et al. Three dimensional convective seeding model and its field applications. J Appl Meteor Sci, 2001, 12(Suppl I): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1015.htm
|
[96] |
Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
|
[97] |
Lou X F, He G F, Hu Z J, et al. Development of salt seeding scheme in 3D convective cloud model and seeding simulation. Plateau Meteorology, 2013, 32(2): 491-500. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201302016.htm
|
[98] |
Lou X F, Shi Y, Lu G X. Numerical modeling of hailstorms with AgI seeding. J Appl Meteor Sci, 2016, 27(2): 129-139. doi: 10.11898/1001-7313.20160201
|
[99] |
Lou X F, Fu Y, Sun J. Seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. doi: 10.11898/1001-7313.20190603
|
[100] |
Liu W G, Tao Y, Dang J, et al. Seeding modeling study of two precipitation processes over northern China in the spring of 2014. Chin J Atmos Sci, 2016, 40(4): 669-688. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201604002.htm
|
[101] |
Su Z J, Guo X L, Zhu G J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608
|