实况 | 预测 | |
发生(positive) | 未发生(negative) | |
发生(true) | TP | TN |
未发生(false) | FP | FN |
Citation: | Han Feng, Yang Lu, Zhou Chuxuan, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. DOI: 10.11898/1001-7313.20210205. |
Table 1 Relations between labels and predictions
实况 | 预测 | |
发生(positive) | 未发生(negative) | |
发生(true) | TP | TN |
未发生(false) | FP | FN |
Table 2 Data subset of sounding stations
站点试验数据子集名称 | 学习集 | 学习集事件发生率 | 独立检验集 | 检验集事件发生率 |
试验2019 | 2015—2018年6—9月 | 0.234 | 2019年6—9月 | 0.179 |
试验2018 | 2015—2017年6—9月 2019年6—9月 |
0.214 | 2018年6—9月 | 0.259 |
试验2017 | 2015—2016年6—9月 2018—2019年6—9月 |
0.217 | 2017年6—9月 | 0.241 |
Table 3 Selected elements
序号 | 特征名称 | 序号 | 特征名称 | 序号 | 特征名称 | ||
1~5 | 地面层观测* | 33 | 对流有效位能 | 41 | 0~1 km风切变 | ||
6~10 | 925 hPa观测* | 34 | 对流抑制有效位能 | 42 | 0~3 km风切变 | ||
11~15 | 850 hPa观测* | 35 | 下沉对流有效位能 | 43 | 0~6 km风切变 | ||
16~20 | 700 hPa观测* | 36 | 暖云层厚度 | 44 | 0~8 km风切变 | ||
21~25 | 500 hPa观测* | 37 | 整层比湿积分 | 45 | 700 hPa和500h Pa温度差 | ||
26~30 | 400 hPa观测* | 38 | 湿层厚度 | 46 | 850 hPa和500 hPa温度差 | ||
31 | -20℃层高度 | 39 | K指数 | 47 | 总指数 | ||
32 | 最优抬升指数 | 40 | 抬升指数 | 48 | 湿球温度0℃层高度 | ||
注:*包括温度、位势高度、露点温度、风速和风向要素。 |
Table 4 Parameters of XGBoost
中文名 | 参数值 |
模型 | gbtree |
学习率 | 0.15 |
最小叶子节点权重和 | 4 |
树的最大深度 | 7 |
随机采样率 | 0.75 |
随机数种子 | 10 |
Table 5 Average result of comparison test of loss function at each sounding station
站点 | 损失函数 | TS评分 | 命中率 | 空报率 | 检验集短时强降水事件总数 | 检验集短时强降水事件频率 |
北京 | 分段权重损失函数 | 0.46 | 0.70 | 0.44 | 86 | 0.235 |
MSE | 0.38 | 0.49 | 0.35 | |||
Logloss | 0.38 | 0.51 | 0.41 | |||
清远 | 分段权重损失函数 | 0.79 | 0.98 | 0.19 | 266 | 0.727 |
MSE | 0.76 | 0.90 | 0.16 | |||
Logloss | 0.69 | 0.81 | 0.17 | |||
温江 | 分段权重损失函数 | 0.59 | 0.85 | 0.34 | 130 | 0.358 |
MSE | 0.55 | 0.67 | 0.22 | |||
Logloss | 0.52 | 0.63 | 0.21 | |||
上海 | 分段权重损失函数 | 0.51 | 0.80 | 0.42 | 121 | 0.340 |
MSE | 0.46 | 0.64 | 0.39 | |||
Logloss | 0.46 | 0.66 | 0.40 | |||
渝中 | 分段权重损失函数 | 0.31 | 0.38 | 0.36 | 46 | 0.126 |
MSE | 0.24 | 0.27 | 0.32 | |||
Logloss | 0.20 | 0.23 | 0.39 | |||
武汉 | 分段权重损失函数 | 0.49 | 0.73 | 0.39 | 116 | 0.318 |
MSE | 0.44 | 0.56 | 0.31 | |||
Logloss | 0.41 | 0.55 | 0.35 | |||
锦州 | 分段权重损失函数 | 0.31 | 0.49 | 0.54 | 68 | 0.193 |
MSE | 0.19 | 0.26 | 0.57 | |||
Logloss | 0.22 | 0.28 | 0.49 |
Table 6 Quantitative validation of prediction model on 2019 dataset
方法 | 命中率 | 空报率 | TS评分 |
集成学习预测模型 | 0.66 | 0.37 | 0.47 |
GRAPES_3 km预报 | 0.70 | 0.53 | 0.39 |
[1] |
Zhang L N, Wang X M, Xiong Q F, et al. On the evolution of mesoscale environment and influential factors of the heavy rainfall in Beijing on 23 June 2011. Torrential Rain and Disasters, 2014, 33(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201401001.htm
|
[2] |
He L F, Zhou Q L, Shen Y, et al. Introduction and examination of potential forecast for strong convective weather at national level. Meteorological Monthly, 2011, 37(7): 777-784. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201107002.htm
|
[3] |
Chen M X, Yu X D, Tan X G, et al. A brief review on the development of nowcasting for convective storms. J Appl Meteor Sci, 2004, 15(6): 754-766. http://qikan.camscma.cn/article/id/20040693
|
[4] |
Yang B, Sun J S, Mao X, et al. Multi-scale characteristics of atmospheric circulation related to short-time strong rainfall events in Beijing. Acta Meteor Sinica, 2016, 74(6): 919-934. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201606008.htm
|
[5] |
Doswell C A, Brooks H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology. Wea Forecasting, 1996(11): 560-581. http://ci.nii.ac.jp/naid/80009407343
|
[6] |
Zhang X L, Tao S Y, Sun J H. Ingredients-based heavy rainfall forecasting. Chinese Journal of Atmospheric Sciences, 2010, 34(4): 754-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201004009.htm
|
[7] |
Zhang T, Lan Y, Mao D Y, et al. Advances of mesoscale convective weather analysis in NMC I: Convective weather environment analysis and supporting techniques. Meteorological Monthly, 2013, 39(7): 894-900. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201307011.htm
|
[8] |
Lan Y, Zhang T, Zheng Y G, et al. Advances of mesoscale convective weather analysis in NMC Ⅱ: Mesoscale nowcasting analysis and supporting techniques. Meteorological Monthly, 2013, 39(7): 901-910. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201307011.htm
|
[9] |
Wei D, Sun J S, Lei L, et al. Comparative Analysis of three kinds of sounding data in the application of the severe convective weather. Meteorological Monthly, 2011, 37(4): 412-422. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201104006.htm
|
[10] |
Wang H, Li Y, Song L L. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet region. J Appl Meteor Sci, 2020, 31(4): 435-446. doi: 10.11898/1001-7313.20200406
|
[11] |
Wang X F, Ding Y H. Study on method of short-range forecast of severe convective weather in Beijing area. Scientia Atmospherica Sinica, 1994, 12(2): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402004.htm
|
[12] |
Liu Y L. A study of severe convective parameters and their potential predictability to severe convective storms. Meteorological Science and Technology, 2003, 31(3): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200303003.htm
|
[13] |
Li Y D, Gao S T, Liu J W. A calculation of energy and the method of severe weather forecasting. J Appl Meteor Sci, 2004, 15(1): 10-20. http://qikan.camscma.cn/article/id/20040102
|
[14] |
Liu X L, Liu J X, Zhang S L, et al. Hail forecast based on factor combination analysis method sounding data. J Appl Meteor Sci, 2014, 25(2): 168-175. http://qikan.camscma.cn/article/id/20140206
|
[15] |
Lei L, Sun J S, Wei D. Distinguishing the category of the summer convective weather by sounding data in Beijing. Meteorological Monthly, 2011, 37(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102003.htm
|
[16] |
Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi: 10.11898/1001-7313.20190304
|
[17] |
Tian F Y, Zheng Y G, Zhang T, et al. Sensitivity analysis of short-duration heavy rainfall related diagnostic parameters with point-area verification. J Appl Meteor Sci, 2015, 26(4): 385-396. doi: 10.11898/1001-7313.20150401
|
[18] |
Zeng M J, Wang G C, Wu H Y, et al. Study of the forecasting method for the classified severe convection weather based on a meso-scale numerical model. Acta Meteor Sinica, 2015, 73(5): 868-882. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201505005.htm
|
[19] |
Yu X D. Ingredients based forecasting methodology. Meteorological Monthly, 2011, 37(8): 913-918. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201108002.htm
|
[20] |
Sun J S, Tao Z Y. Some essential issues connected with severe convective weather analysis and forecast. Meteorological Monthly, 2012, 38(2): 164-173. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201202007.htm
|
[21] |
Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System//International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 785-794. doi: 10.1145/2939672.2939785
|
[22] |
Li Y, Chen H L. Review of machine learning approaches for modern agrometeorology. J Appl Meteor Sci, 2020, 31(3): 257-266. doi: 10.11898/1001-7313.20200301
|
[23] |
Shi X J, Chen Z R, Wang H, et al.Deep Learning for Precipitation Nowcasting: A Benchmark and a New Model//31st Conference on Neural Information Processing Systems.Long Beach, CA, USA, 2016.
|
[24] |
Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106
|
[25] |
Guo H Y, Chen M X, Han L, et al. High resolution nowcasting experiment of severe convections based on deep learning. Acta Meteor Sinica, 2019, 77(4): 715-727. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904009.htm
|
[26] |
Tang W Y, Zhou Q L, Liu X H, et al. Anlysis on verification of national severe convective weather categorical forecasts. Meteorological Monthly, 2017, 43(1): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201701007.htm
|
[27] |
Zhang N, Chen Q. Ensemble learning training method based on AUC and Q statistics. Journal of Computer Application, 2019, 39(4): 935-939. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201904002.htm
|
[28] |
Friedman J H. Stochastic Gradient Boosting. Computational Statistics and Data Analysis, 2002, 28: 367-378.
|
[29] |
Haklander A J, Delden A V. Thunderstorm predictors and their forecast skill for the Netherlands. Atmos Res, 2003, 67/68: 273-299. http://www.sciencedirect.com/science/article/pii/S0169809503000565
|
[30] |
Yu X D. Nowcasting thinking and method of flash heavy rain. Torrential Rain and Disasters, 2013, 32(3): 202-209. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201303003.htm
|
[31] |
Wang X M, Yu X D, Zhou X G. Discussion on basical issues of thunderstorm potential forecasting. Meteorological Monthly, 2014, 40(4): 389-399. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201404001.htm
|
[32] |
Zheng Y G, Tao Z Y, Yu X D. Some essential issues of severe convective weather forecasting. Meteorological Monthly, 2017, 43(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706001.htm
|
[33] |
Zheng Y G, Zhou K H, Sheng J, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather. J Appl Meteor Sci, 2015, 26(6): 641-657. doi: 10.11898/1001-7313.20150601
|
[34] |
Liu H Z, He L F. Analysis of the June 2019 atmospheric circulation and weather. Meteorological Monthly, 2019, 45(9): 1335-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909013.htm
|