Han Feng, Yang Lu, Zhou Chuxuan, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. DOI:  10.11898/1001-7313.20210205.
Citation: Han Feng, Yang Lu, Zhou Chuxuan, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. DOI:  10.11898/1001-7313.20210205.

An Experimental Study of the Short-time Heavy Rainfall Event Forecast Based on Ensemble Learning and Sounding Data

DOI: 10.11898/1001-7313.20210205
  • Received Date: 2020-08-04
  • Rev Recd Date: 2020-10-21
  • Publish Date: 2021-03-31
  • Sounding analysis is one important method for short-term heavy rainfall event forecasting. By using sounding data of 119 stations at 0800 BT of 1 June -30 September during 2015-2019, based on XGBoost integrated learning framework, a prediction model for short-term heavy rainfall events (not less than 20 mm·h-1) is proposed. Sounding data and derivative physical elements are used as characteristics parameters. The model can forecast whether short-term heavy rainfall occurs around the sounding station in following 12 h. Then an optimization method of high-risk weather is proposed. Using piecewise cost function as a loss function, different weighting factors are used to make the model more sensitive. This will ensure the total number of false prediction samples do not increase, but more false alarms rather than missing ones, leading to a slight increase on threat score (TS), a great improvement on probability of detection (POD) and the false alarm rate (FAR) will not exceed the threshold such as 0.5. After that, two tests are designed including a weighted sensitivity test for the piecewise loss function and a comparison test of the loss function using 12 datasets of 7 regional center sounding stations. The efficiency of the model optimization method is verified and the prediction ability before and after the improvement are compared. At last, a test of national short-term heavy precipitation forecast is designed, by using sounding data from 1 June to 30 September in 2019 as independent test set. Results show that reducing wTP will decrease the number of hits and false alarm of the model's forecast; reducing wFN will increase the number of hits and false alarms; wTN and wFP have little influence on the prediction. Compare with other commonly used cost function, the model with piecewise weight cost function has better forecasting skills, in which the TS is improved by 0.05-0.1, the POD is increased by more than 0.15, and the FAR is improved by 0.05-0.1. The model shows a clear tendency of forecasting positive instead of missing. In addition, the model shows similar results in all independent experiments, indicating that the optimization method has consistent effects on the results. The independent test of the national short-term heavy rainfall forecast experiment shows that the improved model has a certain short-term heavy rainfall forecast ability, with POD of 0.66, FAR of 0.37, and TS of 0.47. Above all, a short-term heavy rain prediction model is constructed based on the integrated decision tree and sounding data. The optimization method which could enhance the forecast skill of model is also proposed and verified.
  • Fig. 1  Result of sensitivity analysis test of weighted piecewise loss function

    Fig. 2  Comparison test of loss function

    (a)threat score, (b)probability of detection, (c)false alarm rate

    Fig. 3  Comparison between observation and 12 h forecast at 0800 BT from 21 Jun to 24 Jun in 2019

    (a)21 Jun, (b)22 Jun, (c)23 Jun, (d)24 Jun

    Table  1  Relations between labels and predictions

    实况 预测
    发生(positive) 未发生(negative)
    发生(true) TP TN
    未发生(false) FP FN
    DownLoad: Download CSV

    Table  2  Data subset of sounding stations

    站点试验数据子集名称 学习集 学习集事件发生率 独立检验集 检验集事件发生率
    试验2019 2015—2018年6—9月 0.234 2019年6—9月 0.179
    试验2018 2015—2017年6—9月
    2019年6—9月
    0.214 2018年6—9月 0.259
    试验2017 2015—2016年6—9月
    2018—2019年6—9月
    0.217 2017年6—9月 0.241
    DownLoad: Download CSV

    Table  3  Selected elements

    序号 特征名称 序号 特征名称 序号 特征名称
    1~5 地面层观测* 33 对流有效位能 41 0~1 km风切变
    6~10 925 hPa观测* 34 对流抑制有效位能 42 0~3 km风切变
    11~15 850 hPa观测* 35 下沉对流有效位能 43 0~6 km风切变
    16~20 700 hPa观测* 36 暖云层厚度 44 0~8 km风切变
    21~25 500 hPa观测* 37 整层比湿积分 45 700 hPa和500h Pa温度差
    26~30 400 hPa观测* 38 湿层厚度 46 850 hPa和500 hPa温度差
    31 -20℃层高度 39 K指数 47 总指数
    32 最优抬升指数 40 抬升指数 48 湿球温度0℃层高度
    注:*包括温度、位势高度、露点温度、风速和风向要素。
    DownLoad: Download CSV

    Table  4  Parameters of XGBoost

    中文名 参数值
    模型 gbtree
    学习率 0.15
    最小叶子节点权重和 4
    树的最大深度 7
    随机采样率 0.75
    随机数种子 10
    DownLoad: Download CSV

    Table  5  Average result of comparison test of loss function at each sounding station

    站点 损失函数 TS评分 命中率 空报率 检验集短时强降水事件总数 检验集短时强降水事件频率
    北京 分段权重损失函数 0.46 0.70 0.44 86 0.235
    MSE 0.38 0.49 0.35
    Logloss 0.38 0.51 0.41
    清远 分段权重损失函数 0.79 0.98 0.19 266 0.727
    MSE 0.76 0.90 0.16
    Logloss 0.69 0.81 0.17
    温江 分段权重损失函数 0.59 0.85 0.34 130 0.358
    MSE 0.55 0.67 0.22
    Logloss 0.52 0.63 0.21
    上海 分段权重损失函数 0.51 0.80 0.42 121 0.340
    MSE 0.46 0.64 0.39
    Logloss 0.46 0.66 0.40
    渝中 分段权重损失函数 0.31 0.38 0.36 46 0.126
    MSE 0.24 0.27 0.32
    Logloss 0.20 0.23 0.39
    武汉 分段权重损失函数 0.49 0.73 0.39 116 0.318
    MSE 0.44 0.56 0.31
    Logloss 0.41 0.55 0.35
    锦州 分段权重损失函数 0.31 0.49 0.54 68 0.193
    MSE 0.19 0.26 0.57
    Logloss 0.22 0.28 0.49
    DownLoad: Download CSV

    Table  6  Quantitative validation of prediction model on 2019 dataset

    方法 命中率 空报率 TS评分
    集成学习预测模型 0.66 0.37 0.47
    GRAPES_3 km预报 0.70 0.53 0.39
    DownLoad: Download CSV
  • [1]
    Zhang L N, Wang X M, Xiong Q F, et al. On the evolution of mesoscale environment and influential factors of the heavy rainfall in Beijing on 23 June 2011. Torrential Rain and Disasters, 2014, 33(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201401001.htm
    [2]
    He L F, Zhou Q L, Shen Y, et al. Introduction and examination of potential forecast for strong convective weather at national level. Meteorological Monthly, 2011, 37(7): 777-784. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201107002.htm
    [3]
    Chen M X, Yu X D, Tan X G, et al. A brief review on the development of nowcasting for convective storms. J Appl Meteor Sci, 2004, 15(6): 754-766. http://qikan.camscma.cn/article/id/20040693
    [4]
    Yang B, Sun J S, Mao X, et al. Multi-scale characteristics of atmospheric circulation related to short-time strong rainfall events in Beijing. Acta Meteor Sinica, 2016, 74(6): 919-934. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201606008.htm
    [5]
    Doswell C A, Brooks H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology. Wea Forecasting, 1996(11): 560-581. http://ci.nii.ac.jp/naid/80009407343
    [6]
    Zhang X L, Tao S Y, Sun J H. Ingredients-based heavy rainfall forecasting. Chinese Journal of Atmospheric Sciences, 2010, 34(4): 754-766. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201004009.htm
    [7]
    Zhang T, Lan Y, Mao D Y, et al. Advances of mesoscale convective weather analysis in NMC I: Convective weather environment analysis and supporting techniques. Meteorological Monthly, 2013, 39(7): 894-900. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201307011.htm
    [8]
    Lan Y, Zhang T, Zheng Y G, et al. Advances of mesoscale convective weather analysis in NMC Ⅱ: Mesoscale nowcasting analysis and supporting techniques. Meteorological Monthly, 2013, 39(7): 901-910. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201307011.htm
    [9]
    Wei D, Sun J S, Lei L, et al. Comparative Analysis of three kinds of sounding data in the application of the severe convective weather. Meteorological Monthly, 2011, 37(4): 412-422. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201104006.htm
    [10]
    Wang H, Li Y, Song L L. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet region. J Appl Meteor Sci, 2020, 31(4): 435-446. doi:  10.11898/1001-7313.20200406
    [11]
    Wang X F, Ding Y H. Study on method of short-range forecast of severe convective weather in Beijing area. Scientia Atmospherica Sinica, 1994, 12(2): 173-183. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402004.htm
    [12]
    Liu Y L. A study of severe convective parameters and their potential predictability to severe convective storms. Meteorological Science and Technology, 2003, 31(3): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200303003.htm
    [13]
    Li Y D, Gao S T, Liu J W. A calculation of energy and the method of severe weather forecasting. J Appl Meteor Sci, 2004, 15(1): 10-20. http://qikan.camscma.cn/article/id/20040102
    [14]
    Liu X L, Liu J X, Zhang S L, et al. Hail forecast based on factor combination analysis method sounding data. J Appl Meteor Sci, 2014, 25(2): 168-175. http://qikan.camscma.cn/article/id/20140206
    [15]
    Lei L, Sun J S, Wei D. Distinguishing the category of the summer convective weather by sounding data in Beijing. Meteorological Monthly, 2011, 37(2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201102003.htm
    [16]
    Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi:  10.11898/1001-7313.20190304
    [17]
    Tian F Y, Zheng Y G, Zhang T, et al. Sensitivity analysis of short-duration heavy rainfall related diagnostic parameters with point-area verification. J Appl Meteor Sci, 2015, 26(4): 385-396. doi:  10.11898/1001-7313.20150401
    [18]
    Zeng M J, Wang G C, Wu H Y, et al. Study of the forecasting method for the classified severe convection weather based on a meso-scale numerical model. Acta Meteor Sinica, 2015, 73(5): 868-882. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201505005.htm
    [19]
    Yu X D. Ingredients based forecasting methodology. Meteorological Monthly, 2011, 37(8): 913-918. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201108002.htm
    [20]
    Sun J S, Tao Z Y. Some essential issues connected with severe convective weather analysis and forecast. Meteorological Monthly, 2012, 38(2): 164-173. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201202007.htm
    [21]
    Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System//International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 785-794. doi:  10.1145/2939672.2939785
    [22]
    Li Y, Chen H L. Review of machine learning approaches for modern agrometeorology. J Appl Meteor Sci, 2020, 31(3): 257-266. doi:  10.11898/1001-7313.20200301
    [23]
    Shi X J, Chen Z R, Wang H, et al.Deep Learning for Precipitation Nowcasting: A Benchmark and a New Model//31st Conference on Neural Information Processing Systems.Long Beach, CA, USA, 2016.
    [24]
    Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi:  10.11898/1001-7313.20190106
    [25]
    Guo H Y, Chen M X, Han L, et al. High resolution nowcasting experiment of severe convections based on deep learning. Acta Meteor Sinica, 2019, 77(4): 715-727. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201904009.htm
    [26]
    Tang W Y, Zhou Q L, Liu X H, et al. Anlysis on verification of national severe convective weather categorical forecasts. Meteorological Monthly, 2017, 43(1): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201701007.htm
    [27]
    Zhang N, Chen Q. Ensemble learning training method based on AUC and Q statistics. Journal of Computer Application, 2019, 39(4): 935-939. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201904002.htm
    [28]
    Friedman J H. Stochastic Gradient Boosting. Computational Statistics and Data Analysis, 2002, 28: 367-378.
    [29]
    Haklander A J, Delden A V. Thunderstorm predictors and their forecast skill for the Netherlands. Atmos Res, 2003, 67/68: 273-299. http://www.sciencedirect.com/science/article/pii/S0169809503000565
    [30]
    Yu X D. Nowcasting thinking and method of flash heavy rain. Torrential Rain and Disasters, 2013, 32(3): 202-209. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201303003.htm
    [31]
    Wang X M, Yu X D, Zhou X G. Discussion on basical issues of thunderstorm potential forecasting. Meteorological Monthly, 2014, 40(4): 389-399. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201404001.htm
    [32]
    Zheng Y G, Tao Z Y, Yu X D. Some essential issues of severe convective weather forecasting. Meteorological Monthly, 2017, 43(6): 641-652. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706001.htm
    [33]
    Zheng Y G, Zhou K H, Sheng J, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather. J Appl Meteor Sci, 2015, 26(6): 641-657. doi:  10.11898/1001-7313.20150601
    [34]
    Liu H Z, He L F. Analysis of the June 2019 atmospheric circulation and weather. Meteorological Monthly, 2019, 45(9): 1335-1340. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201909013.htm
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(6)

    Article views (1992) PDF downloads(276) Cited by()
    • Received : 2020-08-04
    • Accepted : 2020-10-21
    • Published : 2021-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint