Wu Chong, Liu Liping, Yang Meilin, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. DOI: 10.11898/1001-7313.20210206.
Citation: Wu Chong, Liu Liping, Yang Meilin, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. DOI: 10.11898/1001-7313.20210206.

Key Technologies of Hydrometeor Classification and Mosaic Algorithm for X-band Polarimetric Radar

More Information
  • The advantages of X-band polarimetric weather radar focus on its high spatio-temporal resolution and capability of multi-radar networking. However, the previously designed hydrometeor classification algorithm (HCA) for S-band weather radar is unsuitable for X-band weather radar due to the difference of backscattering characteristics and heavy precipitation attenuation. Therefore, the key technologies of hydrometeor classification algorithm and multi-radar mosaic algorithm for X-band polarimetric weather radar are proposed. First, it is found that the melting layer detection algorithm designed for S-band polarimetric weather radar is not suitable for X-band weather radar through analysis on the data collected by Beijing X-band radar network. A melting layer detection method based on quasi-vertical profile is proposed, which greatly improves the accuracy of obtaining the melting information. Second, a confidence threshold adjustment method is proposed to accurately estimate the data quality in the case of precipitation and clutter superposition. Third, an optimization method of membership functions based on data statistics is proposed to reconstruct the classification parameters suitable for Beijing X-band radar network. Finally, a multi-radar mosaic method based on rainfall attenuation is proposed, in which the reflectivity factors of networking radars are weighted and averaged by the data quality factor. Compared with the traditional method, it is found that the structural inhomogeneity of X-band radar mosaic result is effectively reduced. Those modifications effectively enhance the reliability of classification mosaic results of X-band weather radar network and provide technical support for the rapid deployment of X-band radar in China. Three typical precipitation cases in Beijing during the flood season in 2016 are used to compare the observational efficiency between X-band weather radar network and S-band operational radar. For the cases of convective rainfall, fine echo structures and reasonable hydrometeor distributions are found in X-band radar mosaic results. Especially for convective rainfall with short duration and small spatial scale, the advantage of X-band radar is more obvious, which alleviates the limited detection ability of S-band operational radar in urban areas. In addition, the hail falling area identified by X-band radar can be verified by manual observation in national weather stations. The performance of X-band weather radar network in large-scale stratiform precipitation, however, is not as good as S-band weather radar.
  • Fig  1.   Site distribution and the minimum height of radar coverage of BJ-Xnet and BJSDX

    (the black dotted line indicates the scope of Beijing downtown)

    Fig  2.   Melting Layers identified by MLDA and QVP for BJXSY radar

    (a)distribution of melting particles identified by the MLDA at 0732 BT 20 Jul 2016(the scattered)
    (black solid lines represent the top and bottom of melting layers varying with azimuth, and black dotted line represents the height of melting layer obtained by upair sounding),(b)melting layers identified by QVP from 0100 BT to 1700 BT on 20 Jul 2016

    Fig  3.   The profiles of Gauss functions and the minimum reflectivity of BJXSY radar

    (a)Fatt, (b)minimum reflectivity, (c)Fsnr, (d)Frhv

    Fig  4.   The frequency diagrams of ZH-ZDR, ZH-ρhv and ZH-KDP(l) of different hydrometeors from BJXSY radar in flood season of 2016

    (the black and red boxes represent the default and modified membership functions respectively, and the solid line and dotted lines represent the boundary of membership function with values of 1 and 0)

    Fig  5.   The CAPPI of mosaic test at 2.5 km height observed by BJ-Xnet at 0620 BT 31 Jul 2016

    Fig  6.   Mosaic results of ZH by DW method, PW method and QW method for BJ-Xnet at 2.5 km height at 0620 BT 31 Jul 2016

    Fig  7.   The comparison of CAPPI between BJSDX and BJ-Xnet at 2.5 km height on 27 Jul 2016

    (the black dotted line indicates the scope of Beijing downtown, the black solid line indicates position of vertical sections)

    Fig  8.   The same as in Fig. 7, but for comparison of vertical structures between BJSDX and BJ-Xnet

    (positions of vertical section are marked by black solid lines in the CAPPIs)

    Fig  9.   The same as in Fig. 7, but for comparison between BJSDX and BJ-Xnet on 30 Jul 2016

    Fig  10.   The same as Fig. 8, but for comparison between BJSDX and BJ-Xnet on 30 Jul 2016

    Fig  11.   The same as Fig. 7, but for comparison between BJSDX and BJ-Xnet on 20 Jul 2016

    Table  1   Parameters of membership functions of BJ-Xnet before and after modification

    相态 隶属函数 单位 默认隶属函数参数 改进后隶属函数参数
    x1 x2 x3 x4 x1 x2 x3 x4
    干雪 P[ZDR] dB -0.3 0 0.3 0.6 -0.3 -0.1 0.4 0.6
    干雪 P[ρhv] 0.95 0.98 1 1.01 0.95 0.97 1 1.01
    冰晶 P[ρhv] 0.95 0.98 1 1.01 0.95 0.97 1 1.01
    冰晶 P[KDP(l)] dB·km-1 -5 0 10 15 -30 -25 10 20
    湿雪 P[ZH] dBZ 25 30 40 50 20 23 37 45
    湿雪 P[ZDR] dB 0.5 1 2 3 0 0.5 2 2.5
    湿雪 P[ρhv] 0.88 0.92 0.95 0.985 0.86 0.88 0.96 0.985
    P[ZDR] dB -0.3 0.0 f1 f1+0.3 -1.5 -0.8 0.0 0.5
    雨夹雹 P[ZDR] dB -0.3 0.0 f1 f1+0.5 -1.5 -1.0 f1+0.3 f1+0.8
    雨夹雹 P[ρhv] dB 0.85 0.90 1.00 1.01 0.80 0.90 1.00 1.01
    雨夹雹 P[KDP(l)] dB·km-1 -10 -4 g1 g1+1 -10 -4 5 7
    晴空回波 P[ZDR] dB 0 2 10 12 -5 -2 2 7
    晴空回波 P[ρhv] 0.3 0.5 0.8 0.83 0.2 0.3 0.75 0.83
    晴空回波 P[σ(ZH)] (°) 1 2 4 7 1 1.5 5 8
    晴空回波 P[σ(ΦDP)] (°) 8 10 40 60 8 15 120 150
    DownLoad: CSV
  • [1]
    Seliga T A,Bringi V N.Potential use of differential reflectivity measurements at orthogonal polarizations for measuring precipitation.J Appl Meteor,1976,15:69-76. DOI: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
    [2]
    Ryzhkov A V, Schuur T J, Burgess D W, et al. The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull Amer Meteor Soc, 2005, 86(6): 809-824. DOI: 10.1175/BAMS-86-6-809
    [3]
    刘黎平, 葛润生. 中国气象科学研究院雷达气象研究50年. 应用气象学报, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117

    Liu L P, Ge R S. An overview on radar meteorology research in Chinese Academy of Meteorological Sciences for a half century. J Appl Meteor Sci, 2006, 17(6): 682-689. http://qikan.camscma.cn/article/id/200606117
    [4]
    Zhao K, and Coauthors. Recent progress in dual-polarization radar research and applications in China. Adv Atmos Sci, 2019, 36(9): 961-974. DOI: 10.1007/s00376-019-9057-2
    [5]
    王洪, 孔凡铀, Jung Youngsun, 等. 面向资料同化的S波段双偏振雷达质量控制. 应用气象学报, 2018, 29(5): 546-558. DOI: 10.11898/1001-7313.20180504

    Wang H, Kong F Y, Jung Y, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. DOI: 10.11898/1001-7313.20180504
    [6]
    曹杨, 陈洪滨, 苏德斌. C波段双线偏振天气雷达零度层亮带识别和订正. 应用气象学报, 2018, 29(1): 84-96. DOI: 10.11898/1001-7313.20180108

    Cao Y, Chen H B, Su D B. Identification and correction of the bright band using a C-band dual polarization weather radar. J Appl Meteor Sci, 2018, 29(1): 84-96. DOI: 10.11898/1001-7313.20180108
    [7]
    蒋银丰, 寇蕾蕾, 陈爱军, 等. 双偏振雷达和双频测雨雷达反射率因子对比. 应用气象学报, 2020, 31(5): 608-619. DOI: 10.11898/1001-7313.20200508

    Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. DOI: 10.11898/1001-7313.20200508
    [8]
    Bringi V N, Chandrasekar V, 李忱, 等. 偏振多普勒天气雷达原理和应用. 北京: 气象出版社, 2010.

    Bringi V N, Chandrasekar V, Li C, et al. Principle and Application of Polarization Doppler Weather Radar. Beijing: China Meteorological Press, 2010.
    [9]
    Park H, Ryzhkov A V, Zrnic, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24: 730-748. DOI: 10.1175/2008WAF2222205.1
    [10]
    Elmore K L. The NSSL hydrometeor classification algorithm in winter surface precipitation: Evaluation and future development. Wea Forecasting, 2011, 26: 756-765. DOI: 10.1175/WAF-D-10-05011.1
    [11]
    Snyder J C, Ryzhkov A V. Automated detection of polarimetric tornadic debris signatures using a hydrometeor classification algorithm. J Appl Meteor Climatol, 2015, 54: 1861-1870. DOI: 10.1175/JAMC-D-15-0138.1
    [12]
    Wang Y, Zhang J, Ryzhkov A V, et al. C-band polarimetric radar QPEs based on specific differential propagation phase for extreme typhoon rainfall. J Atmos Oceanic Technol, 2013, 30: 1354-1370. DOI: 10.1175/JTECH-D-12-00083.1
    [13]
    Wang Y, Cocks S, Tang L, et al. A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J Hydrometeorol, 2019, 20: 985-997. DOI: 10.1175/JHM-D-18-0071.1
    [14]
    刘晓阳, 李郝, 何平, 等. GPM/DPR雷达与CINRAD雷达降水探测对比. 应用气象学报, 2018, 29(6): 667-679. DOI: 10.11898/1001-7313.20180603

    Liu X Y, Li H, He P, et al. Comparison on the precipitation measurement between GPM/DPR and CINRAD radars. J Appl Meteor Sci, 2018, 29(6): 667-679. DOI: 10.11898/1001-7313.20180603
    [15]
    阮征, 李淘, 金龙, 等. 大气垂直运动对雷达估测降水的影响. 应用气象学报, 2017, 28(2): 200-208. DOI: 10.11898/1001-7313.20170207

    Ruan Z, Li T, Jin L, et al. Influence of vertical air motion on the radar quantitative precipitation estimation. J Appl Meteor Sci, 2017, 28(2): 200-208. DOI: 10.11898/1001-7313.20170207
    [16]
    程周杰, 刘宪勋, 朱亚平. 双偏振雷达对一次水凝物相态演变过程的分析. 应用气象学报, 2009, 20(5): 594-601. http://qikan.camscma.cn/article/id/20090511

    Cheng Z J, Liu X X, Zhu Y P. A process of hydrometeor phase change with dual-polarimetric radar. J Appl Meteor Sci, 2009, 20(5): 594-601. http://qikan.camscma.cn/article/id/20090511
    [17]
    刘亚男, 肖辉, 姚振东, 等. X波段双极化雷达对云中水凝物粒子的相态识别. 气候与环境研究, 2012, 17(6): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206031.htm

    Liu Y N, Xiao H, Yao Z D, et al. Analyses of hydrometeor identification based on X-band polarimetric radar. Climatic and Environmental Research, 2012, 17(6): 925-936. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206031.htm
    [18]
    冯亮, 肖辉, 孙跃. X波段双偏振雷达水凝物粒子相态识别应用研究. 气候与环境研究, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm

    Feng L, Xiao H, Sun Y. A study on hydrometeor classification and application based on X-band dual-polarization radar measurements. Climatic and Environmental Research, 2018, 23(3): 366-386. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803011.htm
    [19]
    杜牧云, 刘黎平, 胡志群, 等. 双线偏振雷达差分传播相移的质量控制. 应用气象学报, 2012, 23(6): 710-720. http://qikan.camscma.cn/article/id/20120608

    Du M Y, Liu L P, Hu Z Q, et al. Quality control of differential propagation phase shift for dual linear polarization radar. J Appl Meteor Sci, 2012, 23(6): 710-720. http://qikan.camscma.cn/article/id/20120608
    [20]
    马舒庆, 陈洪滨, 王国荣, 等. 阵列天气雷达设计与初步实现. 应用气象学报, 2019, 30(1): 1-12. DOI: 10.11898/1001-7313.20190101

    Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. DOI: 10.11898/1001-7313.20190101
    [21]
    Junyent F, Chandrasekar V. Theory and characterization of weather radar networks. J Atmos Oceanic Technol, 2009, 26(3): 474-491. http://adsabs.harvard.edu/abs/2009JAtOT..26..474J
    [22]
    徐舒扬, 吴翀, 刘黎平. 双偏振雷达水凝物相态识别算法的参数改进. 应用气象学报, 2020, 31(3): 350-360. DOI: 10.11898/1001-7313.20200309

    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. DOI: 10.11898/1001-7313.20200309
    [23]
    王红艳, 刘黎平, 肖艳娇, 等. 新一代天气雷达三维数字组网软件系统设计与实现. 气象, 2009, 35(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906003.htm

    Wang H Y, Liu L P, Xiao Y J, et al. Design and implementation of the CINRAD 3D Digital Mosaic System. Meteor Mon, 2009, 35(6): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906003.htm
    [24]
    吴翀, 刘黎平, 吴海涛. 多部X波段天气雷达测量偏差分布及组网拼图结果分析. 高原气象, 2016, 35(3): 823-833. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201603024.htm

    Wu C, Liu L P, Wu H T. Measurement bias and mosaics analysis for X band Doppler radars. Plateau Meteorology, 2016, 35(3): 823-833. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201603024.htm
    [25]
    Giangrande S E, Krause J M, Ryzhkov A V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J Appl Meteor Climatol, 2008, 47: 1354-1364. http://adsabs.harvard.edu/abs/2008JApMC..47.1354G
    [26]
    Ryzhkov A V. The impact of beam broadening on the quality of radar polarimetric Data. J Atmos Oceanic Technol, 2007, 24: 729-744. http://adsabs.harvard.edu/abs/2007JAtOT..24..729R
    [27]
    王超, 吴翀, 刘黎平. X波段双线偏振雷达数据质量分析及控制方法. 高原气象, 2018, 38(3): 636-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201903018.htm

    Wang C, Wu C, Liu L P. Data quality analysis and control method of X-band dual polarization radar. Plateau Meteorology, 2019, 38(3): 636-649. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201903018.htm
    [28]
    Wang C, Wu C, Liu L, et al. Integrated correction algorithm for X band dual-polarization radar reflectivity based on CINRAD/SA radar. Atmosphere, 2020, 11(1): 119. http://www.researchgate.net/publication/338722402_Integrated_Correction_Algorithm_for_X_Band_Dual-Polarization_Radar_Reflectivity_Based_on_CINRADSA_Radar
    [29]
    Wu C, Liu L P, Wei M, el al. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 2018, 35(3): 296-316.
    [30]
    Ryzhkov A V, Zhang P, Reeves H D, et al. Quasivertical profiles-A new way to look at polarimetric radar data. J Atmos Oceanic Technol, 2016, 33: 551-562. http://adsabs.harvard.edu/abs/2016JAtOT..33..551R
    [31]
    Dolan B, Rutledge S A. A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J Atmos Oceanic Technol, 2009, 26: 2071-2088.
    [32]
    石宝灵, 王红艳, 刘黎平. 云南多普勒天气雷达网探测冰雹的覆盖能力. 应用气象学报, 2018, 29(3): 270-281. DOI: 10.11898/1001-7313.20180302

    Shi B L, Wang H Y, Liu L P. Coverage capacity of hail detection for Yunnan Doppler weather radar network. J Appl Meteor Sci, 2018, 29(3): 270-281. DOI: 10.11898/1001-7313.20180302
    [33]
    滕玉鹏, 陈洪滨, 马舒庆, 等. 北京S波段天气雷达夜间晴空回波产生原因. 应用气象学报, 2020, 31(5): 595-607. DOI: 10.11898/1001-7313.20200507

    Teng Y P, Chen H B, Ma S Q, et al. The cause of night clear air echo of S-band weather radar in Beijing. J Appl Meteor Sci, 2020, 31(5): 595-607. DOI: 10.11898/1001-7313.20200507
    [34]
    孙继松, 雷蕾, 于波, 等. 近10年北京地区极端暴雨事件的基本特征. 气象学报, 2015, 73(4): 609-623. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504001.htm

    Sun J S, Lei L, Yu B, et al. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area. Acta Meteor Sinica, 2015, 73(4): 609-623. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504001.htm
  • Cited by

    Periodical cited type(18)

    1. 黄兆楚,印佳楠,杨洋,张晓瑞,黄毅,王梧熠,崔毅,李禧亮. 石家庄S波段和X波段双偏振雷达定量降水估测应用研究. 高原气象. 2025(01): 253-264 .
    2. 万夫敬,孙继松,李博,罗江珊,孙露文. 山东半岛连续两天高架对流降水相态差异的形成机制分析. 气象学报. 2025(01): 1-19 .
    3. 文浩,王辉,张扬,吴蕾,李瑞义. 北京地区X波段双偏振天气雷达差分反射率因子系统偏差分析及订正. 高原气象. 2025(02): 393-406 .
    4. 刘于新,马建立,陈明轩,史朝. S波段与X波段天气雷达探测参量差异及组网融合处理研究. 气象. 2024(04): 488-498 .
    5. 张哲,罗红艳,戚友存,黎慧琦,罗鸣,朱自伟. 基于雨滴谱仪和S波段雷达的X波段相控阵雷达反射率观测质量定量分析. 气象. 2024(10): 1187-1200 .
    6. 夏凡,吴炜,张乐坚,文浩. 基于S波段双偏振雷达融化层识别算法的研究. 气象. 2023(02): 146-156 .
    7. 曾勇,李丽丽,罗雄,王瑾,张小娟,杨哲. 基于X波段双偏振雷达的贵州威宁一次冰雹过程水成物粒子识别研究. 中低纬山地气象. 2023(01): 54-62+81 .
    8. 刘陈帅,陈生. 基于面向对象的降水粒子识别研究. 热带气象学报. 2023(04): 593-602 .
    9. 梅雨菲,陈生,刘陈帅,肖柳斯. 珠海X波段双偏振相控阵雷达定量降水估测产品质量评估. 热带气象学报. 2023(04): 614-621 .
    10. 冯涛,蔡泽林,李丽,叶钰,简州. X波段双偏振相控阵雷达回波特征分析与相态识别方法. 自动化与仪器仪表. 2023(10): 54-58 .
    11. 郭飞燕,刁秀广,褚颖佳,马艳. 弱垂直风切变环境下强下击暴流双偏振雷达特征. 应用气象学报. 2023(06): 681-693 . 本站查看
    12. 张林,吴蕾,李峰,李雁,施丽娟,孙康远. 基于深度学习的天气雷达异常数据识别技术. 应用气象学报. 2023(06): 694-705 . 本站查看
    13. 夏凡,龚佃利,潘佳文,史茜. 双偏振雷达水凝物分类算法优化及在雹暴云的应用分析. 气象. 2023(11): 1343-1358 .
    14. 李哲,吴翀,刘黎平,宗蓉,罗鸣. 双偏振相控阵雷达误差评估与相态识别方法. 应用气象学报. 2022(01): 16-28 . 本站查看
    15. 张昕,陈超,顾淏清,缪明榕,朱毅,孙正齐. 盐城市X波段全固态双偏振天气雷达在探测短时强对流天气中的应用. 电子元器件与信息技术. 2022(03): 194-196 .
    16. 刁秀广,李芳,万夫敬. 两次强冰雹超级单体风暴双偏振特征对比. 应用气象学报. 2022(04): 414-428 . 本站查看
    17. 张林,李峰,吴蕾,孙康远. CINRAD/SAD双偏振雷达非降水回波识别技术. 应用气象学报. 2022(06): 724-735 . 本站查看
    18. 张荣,李宏宇,周旭,李昊,胡向峰,夏强. DMT机载云粒子图像形状识别及其应用. 应用气象学报. 2021(06): 735-747 . 本站查看

    Other cited types(3)

Catalog

    Figures(11)  /  Tables(1)

    Article views2928 PDF downloads398 Cited by: 21
    • Received : 2020-06-30
    • Accepted : 2020-10-18
    • Published : 2021-03-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return