试验 | 温室气体排放情景 | 气溶胶排放情景 |
TA | 2000年 | 2000年 |
TB | 2000年 | 1850年 |
TC | 1850年 | 1850年 |
Citation: | Peng Yanyu, Liu Yu, Miao Yucong. A numerical study on impacts of greenhouse gases on Asian summer monsoon. J Appl Meteor Sci, 2021, 32(2): 245-256. DOI: 10.11898/1001-7313.20210209. |
Table 1 Numerical experiment designs
试验 | 温室气体排放情景 | 气溶胶排放情景 |
TA | 2000年 | 2000年 |
TB | 2000年 | 1850年 |
TC | 1850年 | 1850年 |
[1] |
Zhu Q G, Lin J R, Shou S W, et al. Synoptic Meteorology Principles and Methods. Beijing: China Meteorological Press, 2000: 565-579.
|
[2] |
Miao Y C, Guo J P, Liu S H, et al. Classification of summertime synoptic patterns in Beijing and their association with boundary layer structure affecting aerosol pollution. Atmos Chem Phys, 2017, 17: 3097-3110. doi: 10.5194/acp-17-3097-2017
|
[3] |
Miao Y C, Hu X M, Liu S H, et al. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1602-1626. doi: 10.1002/2015MS000522
|
[4] |
Chu Z, Guo J P. Effects of climatic change on maize varieties distribution in the future of Northeast China. J Appl Meteor Sci, 2018, 29(2): 165-176. doi: 10.11898/1001-7313.20180204
|
[5] |
Hou Y Y, Zhang L, Wu M X, et al. Advances of modern agrometeorological service and technology in China. J Appl Meteor Sci, 2018, 29(6): 641-656. doi: 10.11898/1001-7313.20180601
|
[6] |
Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China. J Appl Meteor Sci, 2019, 30(2): 129-141. doi: 10.11898/1001-7313.20190201
|
[7] |
Ren S X, Zhao H R, Qi Y, et al. The outbreak and damage of the Pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. doi: 10.11898/1001-7313.20200509
|
[8] |
Song F F.Numerical Simulation of Natural Variability and External Forcing Affecting East Asian Summer Monsoon Changes.Beijing: University of Chinese Academy of Sciences, 2015.
|
[9] |
Bao Q, Wang B, Liu Y M, et al. The impact of the Tibetan Plateau warming on the East Asian summer monsoon-A study of numerical simulation. Chin J Atmos Sci, 2008, 32(5): 997-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200805000.htm
|
[10] |
Ke Z J, Hua L J, Zhong L H, et al. The influence of sea surface temperature anomaly on the East Asian summer monsoon strength and its precursor. J Appl Meteor Sci, 2015, 26(5): 536-544. doi: 10.11898/1001-7313.20150503
|
[11] |
Tada R, Zheng H B, Clift P D. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Progress in Earth & Planetary Science, 2016, 3(1): 4.
|
[12] |
Wang S W, Ye J L, Gong D Y, et al. Construction of mean annual temperature series for the last one hundred years in China. J Appl Meteor Sci, 1998, 9(4): 392-401. http://qikan.camscma.cn/article/id/19980459
|
[13] |
Wang Y J, Zhou B T, Ren Y Y, et al. Impacts of global climate change on China's climate security. J Appl Meteor Sci, 2016, 27(6): 750-758. doi: 10.11898/1001-7313.20160612
|
[14] |
He C, Wang Z Q, Zhou T J, et al. Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate. J Climate, 2019, 32(11): 3373-3388. doi: 10.1175/JCLI-D-18-0427.1
|
[15] |
Bueh C. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios. Chin Sci Bull, 2003, 48(7): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200307021.htm
|
[16] |
Yang S L, Ding Z L, Li Y Y, et al. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences, 2015, 112(43): 13178-13183. doi: 10.1073/pnas.1504688112
|
[17] |
Pang Y S, Zhu C W, Ma Z F, et al. Coupling wheels in the East Asian summer monsoon circulations and their impacts on precipitation anomalies in China. Chin J Atmos Sci, 2019, 43(4): 875-894. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904013.htm
|
[18] |
Wang H, Li D L. Effects of anthropogenic emissions of CO2 and aerosols on decadal transition of summer precipitation over eastern China in the late 1970s. Acta Meteor Sinica, 2019, 77(2): 327-345. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902013.htm
|
[19] |
Chen Z L, Dong X X, Wang X, et al. Spatial change of precipitation in response to the Paleocene-Eocene thermal maximum warming in China. Global and Planetary Change, 2020, 194, 103313. doi: 10.1016/j.gloplacha.2020.103313
|
[20] |
Sun Y, Ding Y H. Responses of South and East Asian summer monsoons to different land-sea temperature increases under a warming scenario. Chin Sci Bull, 2011, 56(25): 2718-2726. doi: 10.1007/s11434-011-4602-0
|
[21] |
Chen L, Qu X, Huang G, et al. Projections of East Asian summer monsoon under 1.5℃ and 2℃ warming goals. Theoretical and Applied Climatology, 2019, 137: 2187-2201. doi: 10.1007/s00704-018-2720-1
|
[22] |
Ding Y H, Li X, Li Q P. Advances of surface wind speed changes over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi: 10.11898/1001-7313.20200101
|
[23] |
Li Q P, Ding Y H, Dong W J. Summer precipitation change over eastern China in future 30 years under SRES A2 scenario. J Appl Meteor Sci, 2008, 19(6): 770-780. http://qikan.camscma.cn/article/id/20080617
|
[24] |
Lu B.Effects of Greenhouse Gases and Aerosols on the Changes of Global Monsoon and East Asian Monsoon.Beijing: Peking University, 2013.
|
[25] |
Wang J W, Tang X, Chen B D, et al. Global warming and north edge of Asian summer monsoon: Numerical experiment with doubled CO2. Plateau Meteorology, 2012, 31(2): 418-427. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202014.htm
|
[26] |
Wu L X, Meng S J, Liu Z Y. The roles of oceans in the Asian summer monsoon response to global warming. Periodical of Ocean University of China, 2009, 39(5): 839-845. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDHY200905012.htm
|
[27] |
Li X Q, Ting M F, Li C H, et al. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J Climate, 2015, 28(10): 4107-4125. doi: 10.1175/JCLI-D-14-00559.1
|
[28] |
He B, Bao Q, Li J D, et al. Influences of external forcing changes on the summer cooling trend over East Asia. Climatic Change, 2013, 117(4): 829-841. doi: 10.1007/s10584-012-0592-4
|
[29] |
Song F F, Zhou T J, Qian Y. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys Res Lett, 2014, 41(2): 596-603. doi: 10.1002/2013GL058705
|
[30] |
Li X Q, Ting M F. Understanding the Asian summer monsoon response to greenhouse warming: The relative roles of direct radiative forcing and sea surface temperature change. Climate Dyn, 2016, 49: 2863-2880.
|
[31] |
Li X, Liang J Y, Zheng B. Interdecadal variabilities of SCS summer monsoon intensity. J Appl Meteor Sci, 2007, 18(3): 330-339. http://qikan.camscma.cn/article/id/20070355
|
[32] |
Yang M, Xu H M, Li W L, et al. Variations of East Asian monsoon and its relationships with land-sea temperature difference in recent 40 years. J Appl Meteor Sci, 2008, 19(5): 522-530. http://qikan.camscma.cn/article/id/20080502
|
[33] |
Xie L A. Diagnostic study of summer monsoon over the South China Sea. Journal of Nanjing Institute of Meteorology, 1986(2): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198602002.htm
|
[34] |
Krishnamurti T N, Ramanathan Y. Sensitivity of the monsoon onset to differential heating. J Atmos Sci, 1982, 39(6): 1290-1306. doi: 10.1175/1520-0469(1982)039<1290:SOTMOT>2.0.CO;2
|
[35] |
Guo Z Y, Liu Y, Li W L. A numerical study of the mechanism of aerosols effect on Asian summer monsoon. Acta Meteor Sinica, 2017, 75(5): 797-810. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201705010.htm
|
[36] |
Ma X L, Gao X N, Liu Y, et al. Simulations of aerosol influences on the East Asian winter monsoon. J Appl Meteor Sci, 2018, 29(3): 333-343. doi: 10.11898/1001-7313.20180307
|
[37] |
Neale R B, Chen C C, Gettelman A, et al.Description of the NCAR Community Atmosphere Model(CAM 5.0).NCAR Technical Note NCAR/TN-486+STR, 2012.
|
[38] |
Ding N, Li H M, Zhang T, et al.Performance Modeling of the Community Earth System Model CESM//National Conference on High Performance Computing, 2013: 173-181.
|
[39] |
Liou K N, Guo C L, Zhou S J. An Introduction to Atmospheric Radiation. Beijing: China Meteorological Press, 2004.
|
[40] |
Yanai M, Esbensen S, Chu J H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci, 1973, 30(4): 611-627. doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
|
[41] |
Yu Z H, Miao M Q, Jiang Q R, et al. Fluid Mechanics. Beijing: China Meteorological Press, 2007.
|
[42] |
Krishnamurti T N, Suhrahmanyam D. The 30 to 50 day mode at 850 mb during MONEX. J Atmos Sci, 1982, 39(9): 2088-2095. doi: 10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2
|
[43] |
Chen L X, Zhu Q G, Luo H B. East Asian Monsoon. Beijing: China Meteorological Press, 1995.
|
[44] |
Huang R H, Sun F Y. Impacts of the thermal state and the convective activities in the tropical western warm pool on the summer climate anomalies in East Asia. Chin J Atmos Sci, 1994, 18(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199402001.htm
|
[45] |
Bueh C, Shi N, Ji L R, et al. Features of the EAP events on the medium-range evolution process and the mid- and high-latitude Rossby wave activities during the Meiyu period. Chin Sci Bull, 2008, 53(4): 610-623. doi: 10.1007/s11434-008-0005-2
|
[46] |
Shi W L, Min J Z, Fei J F, et al. Analysis of characteristics of convective precipitation under global warming and its impact factors. Climatic and Environmental Research, 2013, 18(1): 32-42. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201301005.htm
|