Xiao Hui, Shu Weixi, Fu Danhong, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles. J Appl Meteor Sci, 2021, 32(3): 257-271. DOI:  10.11898/1001-7313.20210301.
Citation: Xiao Hui, Shu Weixi, Fu Danhong, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles. J Appl Meteor Sci, 2021, 32(3): 257-271. DOI:  10.11898/1001-7313.20210301.

A Review on the Effect of Sound Waves upon the Coalescence of Aerosol and Cloud and Fog Particles

DOI: 10.11898/1001-7313.20210301
  • Received Date: 2021-02-03
  • Rev Recd Date: 2021-04-29
  • Publish Date: 2021-05-31
  • The effect of sound waves on the coalescence of aerosol particles and cloud and fog droplets is a frontier scientific problem in the field of cloud physics and weather modification. The technology of acoustic coalescence has attracted much attention due to its relatively simple experimental device, strong adaptability, and short operation time. These advantages make it a potential new technology of aerosol coalescence. The research progress of acoustic coalescence of aerosol particles and cloud and fog droplets is reviewed from the aspects of theory, experiment, and numerical simulation. The mechanisms of acoustic coalescence mainly include orthokinetic interaction, hydrodynamic interaction (including acoustic wake effect, mutual radiation pressure effect, and mutual scattering effect), and acoustic-induced turbulence effect. The coalescence of aerosol particles in the sound field appears under the combined action. The low-frequency strong sound wave can increase the relative motion between cloud and fog droplets and promote the process of collision and coalescence, which has a significant impact on cloud and fog growth and precipitation. Finally, the existing problems and improvement direction of the research on the theory, experimental observation, and numerical simulation of acoustic coalescence are discussed. The complexity of the acoustic coalescence process, the diversity of experimental conditions, and the limitations of the theory, the optimal experimental conditions and parameter configuration for high efficiency of acoustic coalescence are still imperfect, which requires further experimental studies and numerical simulations. In addition, the research on the coalescence effect of sound waves on fog and cloud particles is not deep enough, and the similarities and differences of acoustic coalescence mechanisms between cloud and fog particles and ordinary aerosols are not clear enough. It is emphasized that the cloud chamber and numerical simulation research on the effect of acoustic coalescence on cloud and fog particles should be strengthened, and a large number of field comprehensive observation experiments should be carried out, which is of great scientific significance for the development of new weather modification technologies.
  • Fig. 1  Schematic diagram of the orthokinetic interaction of aerosol particles

    (VA and VB represent the vibrational velocities of particle A and particle B, respectively)

    Fig. 2  Schematic diagram of the acoustic wake effect of aerosol particles

    (V, VA and VB represent the vibrational velocities of air, particle A and particle B, respectively)
    (a)the first half of acoustic cycle,(b)the second half of acoustic cycle

    Fig. 3  Schematic diagram of the mutual radiation pressure effect of aerosol particles

    Fig. 4  Schematic diagram of the mutual scattering effect of aerosol particles

    Table  1  Comparison of the main mechanisms of acoustic coalescence

    项目 同向团聚效应 声波尾流效应 共辐射压效应 共散射效应 声致湍流效应
    是否对单分散相气溶胶有作用
    是否对多分散相气溶胶有作用
    是否有实验直接证明 是(大量) 是(大量) 是(少量)
    是否能解释粒子间距大于声振幅时的聚并现象
    DownLoad: Download CSV

    Table  2  Progress in experimental studies on the acoustic coalescence effect of aerosol particles

    年份 相关文献 研究成果
    1976 [52] 用电子显微镜拍摄到粒径0.01~0.1 μm的黑炭气溶胶粒子声聚并现象
    1979 [34] 对粒径为0.17 μm的单分散相气溶胶进行实验,在驻波声场中观测到声聚并现象
    1983 [32] 对粒径为0.16~0.3 μm的氯化铵颗粒施加声压级为145~155 dB,频率为600~3000 Hz的行波条件,用Berner冲击器测量到声聚并现象,验证同向团聚机制
    1996 [14] 拍摄到单分散玻璃微珠(直径为8.1~22.1 μm)和多分散石英颗粒(直径为25~35 μm)的声聚并过程,发现音叉聚并效应,验证声波尾流效应
    1999 [59] 设计一个实验装置,对粒径小于2.5 μm的飞灰粒子谱进行观测,发现一定时间后粒径谱往大的方向移动,证明存在声聚并现象
    2006 [53] 拍摄到直径为270 μm的水滴在激波管中相互作用现象
    2007 [60] 用电荷耦合器件(charge coupled device, CCD)高速摄像机拍摄到驻波声场中燃煤飞灰单个颗粒(粒径为0.75 μm)和颗粒团(粒径为3 μm)的运动轨迹呈S型
    2009 [55] 用扫描电子显微镜(scanning electron microscopy, SEM)高速摄像机拍摄到低频行波声场中粉煤灰颗粒的聚并现象,验证同向团聚机制
    2016 [61] 利用扫描电迁移率颗粒物粒径谱仪测量了超细颗粒物的声聚并现象,发现频率为20 kHz的声波对10~487 nm粒径的颗粒具有聚并作用
    2017 [33] 获得行波和驻波声场中直径约为7.5 μm的单分散颗粒的运动速度
    2018 [62] 使用高速摄像机拍摄到添加液态粘结剂后,粉煤灰颗粒声聚并效率提高
    2019—2020 [57-58] 使用高速摄像机拍摄分析室内烟气的声聚并过程,发现最佳频率为1500 Hz,认为此现象主要是同向团聚机制在起作用;声聚并效率随初始气溶胶粒子浓度的增大而增大,但随作用时间的推移,增大效应不明显
    2020 [56] 对烟气进行实验,发现声频为1500 Hz时,烟气去除率可达70%,随着烟气温度降低,烟气去除效率提高。只有当声压级超过120 dB时,烟气去除率才有较大提高
    DownLoad: Download CSV

    Table  3  Progress in numerical simulations on the acoustic coalescence effect of aerosol particles

    年份 相关文献 研究成果
    1981 [50] 通过模拟,比较不同声强和粒子质量荷载下声致湍流的声聚并效应,并发现使用驻波的聚并效果好于行波
    1987 [63] 模拟完全填充团聚体积假设下的声聚并过程,忽略重力沉降、布朗运动和声致湍流的影响
    1990 [15] 模拟粉煤灰气溶胶的同向团聚和流体力学机制,首次定量确定流体力学机制对聚并速率的贡献
    1994 [73] 采用改进的模型模拟声聚并过程,将声波散射引起的吸引力作为再填充机理之一,并将粒子间的共辐射压效应作为粒径相近的粒子聚并的主要机制
    1997 [14] 模拟在同向团聚机制、重力和共散射效应共同作用下两个粒子的声聚并过程
    1999 [64] 采用气溶胶动力学的分段算法模拟同向团聚和流体力学机制共同作用下的声聚并过程,除了中高频声波外,模拟结果与实验吻合较好
    2003 [35] 模拟同向团聚机制、重力和声波尾流效应共同作用下二维气溶胶粒子声聚并
    2011 [65] 模拟同向团聚机制、重力相互作用下两个粒子逐渐靠近直至碰撞后形成双粒子聚合体,并继续运动的动态过程
    2015 [66] 对声场中的气溶胶粒子声聚并进行二维数值模拟,比较同向团聚机制、声波尾流效应和共辐射压效应,认为声波尾流效应是主要的声聚并机制
    2017 [74] 基于直接模拟蒙特卡洛法,模拟包括同向团聚、重力沉降和布朗扩散等效应下PM2.5粒子的声聚并,认为声聚并主要由同向团聚机制和重力沉降机制共同控制
    2018 [41] 利用三维离散元模型模拟喷雾液滴作用下包括同向团聚等4种效应的气溶胶的声聚并过程,结果与实验有较好的一致性
    2019 [67] 使用COMSOL Multiphysics软件的计算流体力学、声学和粒子追踪模块进行模拟,得到破碎和不破碎的粒子直径比的区域
    2020 [68] 使用三维CFD-DEM耦合模型,研究了液滴群的声聚并,结果表明高声强(170 dB)且高温高压环境下,气溶胶的团聚性能较好
    DownLoad: Download CSV

    Table  4  Progress in the studies on the acoustic coalescence of cloud and fog droplets

    分类 年份 相关文献 研究成果
    声波消雾 1963 [76] 通过室内初步实验发现,声波对水雾有显著消散作用,声压级超过100 dB左右后,消雾作用明显
    1964 [75] 从理论上初步讨论水雾粒子的声聚并过程,认为理论上利用声波消除水雾具有可行性
    1994 [77] 声波增大多分散雾滴的相互撞击和合并效率
    2002 [83] 进一步实验发现低频(低于50 Hz)且高强度(131, 136 dB)声波对水雾消散有明显作用,并指出声聚并是声波消雾的主要因素之一
    声波影响云和降水 1980 [23] 指出声波能够促使云滴之间碰并加快,尽快产生大云滴
    1984 [79] 计算发现,声波在高声强(超过140 dB)且其频率和振幅满足一定条件时,可减少雨滴下落阻力,雨滴降落速度加快,地面雨强增加
    1985 [84] 利用数值模拟研究声能对云的影响。结果表明:高强度的声波持续几秒钟会导致云滴谱向更大尺寸方向移动,在某些情况下,这会导致降水的早期发展
    1988 [28] 模拟在同向团聚和流体力学机制下液滴群的特征,发现单频且高强度的声波对其有明显影响,会导致降水的快速发展
    2005 [85] 模拟云滴粒子的声聚并过程,发现低频且高强度声场能够增大云滴半径,促进降水的产生
    2015 [87] 数值模拟显示,100 Hz的低频声波为云滴碰并的最佳频率
    2020 [86, 88-89] 数值模拟显示,低频(特别是30 Hz左右)且高强度(143.4 dB)的声波能明显增强云滴碰并效果,对较小云滴(粒径为10 μm)的作用尤为明显
    DownLoad: Download CSV
  • [1]
    Xu J, Zhang X L, Cai X H, et al. Model assessment of dynamical atmospheric pollution control schemes based on sensitive source zone analysis. J Appl Meteor Sci, 2016, 27(6): 654-665. doi:  10.11898/1001-7313.20160602
    [2]
    Zhao X J, Xu J, Zhang Z Y, et al. Beijing regional environmental meteorology prediction system and its performance test of PM2.5 concentration. J Appl Meteor Sci, 2016, 27(2): 160-172. doi:  10.11898/1001-7313.20160204
    [3]
    Shao M, Tang X Y, Zhang Y H, et al. City clusters in China: air and surface water pollution. Front Ecol Environ, 2006, 4(7): 353-361. doi:  10.1890/1540-9295(2006)004[0353:CCICAA]2.0.CO;2
    [4]
    Mednikov E P. Acoustic Coagulation and Precipitation of Aerosols. New York: Consultants Bureau, 1965.
    [5]
    Wood R W, Loomis A L. The physical and biological effects of high-frequency sound-waves of great intensity. Philos Mag, 1927, 4(22): 417-436. doi:  10.1080/14786440908564348
    [6]
    Patterson H S, Cawood W. Phenomena in a sounding tube. Nature, 1931, 127: 667-680. DOI:  10.1038/127667a0.
    [7]
    Brandt O, Hiedemann E. The aggregation of suspended particles in gases by sonic and supersonic waves. Transactions of the Faraday Society, 1936, 32(2): 1101-1110. http://www.researchgate.net/publication/240494532_The_aggregation_of_suspended_particles_in_gases_by_sonic_and_supersonic_waves
    [8]
    Chang Q, Zheng C, Yang Z, et al. Electric agglomeration modes of coal-fired fly-ash particles with water droplet humidification. Fuel, 2017, 200(15): 134-145. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020415780899.html
    [9]
    Zhao C S, Li Y W, Wu X, et al. Experimental investigation on aggregation of coal-fired PM10 by magnetic seeding. Chem Eng J, 2007, 133(1/2/3): 301-309. http://www.sciencedirect.com/science/article/pii/S1385894707001179
    [10]
    Huang S, Park H, Park Y K, et al. Dynamic trajectory and capture of fine dust by magnetic mesh filters based on a particle velocity model. Aerosol Sci Tech, 2015, 49(8): 633-642. doi:  10.1080/02786826.2015.1056337
    [11]
    Smith N R, Shaviv N J, Svensmark H. Approximate analytical solutions to the condensation-coagulation equation of aerosols. Aerosol Sci Tech, 2016, 50(6): 578-590. doi:  10.1080/02786826.2016.1168921
    [12]
    Fan F X, Zhang S H, Wang W Y, et al. Numerical investigation of PM2.5 size enlargement by heterogeneous condensation for particulate abatement. Process Saf Environ, 2019, 125: 197-206. DOI:  10.1016/j.psep.2019.03.018.
    [13]
    Guo Y Q, Zhang J Y, Zhao Y C, et al. Chemical agglomeration of fine particles in coal combustion flue gas: Experimental evaluation. Fuel, 2017, 203(1): 557-569. http://www.sciencedirect.com/science/article/pii/S001623611730577X
    [14]
    Hoffmann T L, Koopmann G H. Visualization of acoustic particle interaction and agglomeration: Theory and experiments. J Acoust Soc Am, 1996, 99(4): 2130-2141. doi:  10.1121/1.415400
    [15]
    Song L. Modelling of Acoustic Agglomeration of Fine Aerosol Particles. Pennsylvania: The Pennsylvania State University, 1990.
    [16]
    Pshenai-Severin S V. Aggregation of aerosol particles in a sound field under the influence of the Oseen hydrodynamic forces. Dokl Akad Nauk SSSR, 1959, 125(4): 775-778. http://www.researchgate.net/publication/288353277_Aggregation_of_aerosol_particles_in_a_sound_field_under_the_influence_of_the_Oseen_hydrodynamic_forces
    [17]
    Chou K H, Lee P S, Shaw D T. Acoustically induced turbulence and shock waves under a traveling-wave condition. J Acoust Soc Am, 1980, 68(6): 1780-1789. doi:  10.1121/1.385222
    [18]
    Liu P, Yin Y, Chen Q, et al. Numerical simulation of hygroscopic seeding effects on warm convective clouds and rainfall reduction. J Appl Meteor Sci, 2019, 30(2): 211-222. doi:  10.11898/1001-7313.20190208
    [19]
    Snider J R, Brenguier J. Cloud condensation nuclei and cloud droplet measurements during ACE-2. Tellus B, 2000, 52(2): 828-842. doi:  10.1034/j.1600-0889.2000.00044.x
    [20]
    Teller A, Levin Z. The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos Chem Phys, 2006, 6(1): 67-80. doi:  10.5194/acp-6-67-2006
    [21]
    Zhao C S, Peng D Y, Duan Y. The impacts of sea-salt and nss-sulfate aerosols on cloud microproperties. J Appl Meteor Sci, 2005, 16(4): 417-425. doi:  10.3969/j.issn.1001-7313.2005.04.001
    [22]
    Pruppacher H R, Klett J D, Wang P K. Microphysics of clouds and precipitation. Aerosol Sci Tech, 1980, 28(4): 381-382. http://www.nature.com/nature/journal/v284/n5751/pdf/284088b0.pdf
    [23]
    Gu Z C. Base of Cloud and Mist Precipitation Physics. Beijing: Science Press, 1980.
    [24]
    Mason B J. The Physics of Clouds. Oxford: Oxford University Press, 1971.
    [25]
    Huag M Y, Xu H Y. Physics of Clouds and Precipitation. Beijing: Science Press, 1999.
    [26]
    Gillespie D T. Three models for the coalescence growth of cloud drops. J Atmos Sci, 1975, 32(3): 600-607. doi:  10.1175/1520-0469(1975)032<0600:TMFTCG>2.0.CO;2
    [27]
    Kovetz A, Olund B. The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J Atmos Sci, 1969, 26(5): 1060-1065. doi:  10.1175/1520-0469(1969)026<1060:TEOCAC>2.0.CO;2
    [28]
    Foster M P, Pflaum J C. The behavior of cloud droplets in an acoustic field: A numerical investigation. J Geophys Res, 1988, 93(D1): 747-758. DOI:  10.1029/JD093iD01p00747.
    [29]
    Tamara T. Acoustic and Aerosol Methods for the Atmospheric Impact to Get Precipitation Enhancement. The 2nd International Workshop on Global Water Cycle and Sky River Research, 2019.
    [30]
    Hoffmann T L. An extended kernel for acoustic agglomeration simulation based on the acoustic wake effect. J Aerosol Sci, 1997, 28(6): 919-936. doi:  10.1016/S0021-8502(96)00489-2
    [31]
    Hoffmann T L. Environmental implications of acoustic aerosol agglomeration. Ultrasonics, 2000, 38: 353-357. doi:  10.1016/S0041-624X(99)00184-5
    [32]
    Cheng M T, Lee P, Berner A, et al. Orthokinetic agglomeration in an intense acoustic field. J Colloid Interface Sci, 1983, 91(1): 176-187. doi:  10.1016/0021-9797(83)90324-7
    [33]
    Zhou D, Luo Z Y, Fang M X, et al. Numerical calculation of particle movement in sound wave fields and experimental verification through high-speed photography. Applied Energy, 2017, 185: 2245-2250. DOI:  10.1016/japenergy.2016.02.006.
    [34]
    Shaw D T, Tu K W. Acoustic particle agglomeration due to hydrodynamic interaction between monodisperse aerosols. J Aerosol Sci, 1979, 10(3): 317-328. doi:  10.1016/0021-8502(79)90047-8
    [35]
    Gonzalez I, Gallego-Juarez J A, Riera E. The influence of entrainment on acoustically induced interactions between aerosol particles-An experimental study. J Aerosol Sci, 2003, 34(12): 1611-1631. doi:  10.1016/S0021-8502(03)00190-3
    [36]
    Hoffmann T L, Koopmann G H. A new technique for visualization of acoustic particle agglomeration. Rev Sci Instrum, 1994, 65(5): 1527-1536. doi:  10.1063/1.1144887
    [37]
    Zhou D, Luo Z Y, Fang M X, et, al. Preliminary experimental study of acoustic agglomeration of coal-fired fine particles. Procedia Engineering, 2015, 102: 1261-1270. DOI:  10.1016/j.proeng.2015.01.256.
    [38]
    Zhang G X, Zhang L L, Wang J Q, et al. A new model for the acoustic wake effect in aerosol acoustic agglomeration processes. Appl Math Model, 2018, 61: 124-140. DOI:  10.1016/j.apm.2018.03.027.
    [39]
    de Sarabia E R F, Gallego-Juarez J A, Rodriguez-Corral G, et al. Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics, 2000, 38: 642-646. doi:  10.1016/S0041-624X(99)00129-8
    [40]
    Riera E, Gallego-Juarez J A, Mason T J. Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams. Ultrason Sonochem, 2006, 13(2): 107-116. doi:  10.1016/j.ultsonch.2005.04.001
    [41]
    Zhang G X, Wang J Q, Chi Z H, et al. Acoustic agglomeration with addition of sprayed liquid droplets: Three-dimensional discrete element modeling and experimental verification. Chem Eng Sci, 2018, 187: 342-353. DOI: 101016/j.ces.2018.05.012.
    [42]
    Wu X, Zeng X, Zhao Y. Theoretical Study on the Acoustic Agglomeration Mechanism of Fine Aerosol Particles. The 21st International Congress on Sound and Vibration, 2014.
    [43]
    Dianov D B, Podolskii A A, Turubarov V I. Calculation of the hydrodynamic interaction of aerosol particles in a sound field under Oseen flow conditions. Soviet Physics-Acoustics, 1968, 13(3): 314-319. http://www.researchgate.net/publication/284377545_Calculation_of_the_hydrodynamic_interaction_of_aerosol_particles_in_a_sound_field_under_Oseen_flow_conditions
    [44]
    Hoffmann T L, Chen W, Koopmann G H, et al. Experimental and numerical analysis of bimodal acoustic agglomeration. J Vib Acoust, 1993, 115(3): 232-240. doi:  10.1115/1.2930338
    [45]
    Hoffmann T L, Koopmann G H. Visualization of acoustic particle interaction and agglomeration: Theory evaluation. J Acoust Soc Am, 1997, 101(6): 3421-3429. doi:  10.1121/1.418352
    [46]
    Tiwary R, Reethof G. Hydrodynamic interaction of spherical aerosol-particles in a high-intensity acoustic field. J Sound Vib, 1986, 108(1): 33-49. doi:  10.1016/S0022-460X(86)80309-1
    [47]
    Zhang G X, Liu J Z, Wang J, et al. Numerical simulation of acoustic wake effect in acoustic agglomeration under Oseen flow condition. Chin Sci Bull, 2012, 57(19): 2404-2412. doi:  10.1007/s11434-012-5212-1
    [48]
    Beyer R T. Physical Acoustics. New York: Springer, 1965.
    [49]
    Merkli P. Theoretische und experimentelle thermoakustische untersuchungen am kolbengetriebenen resonanzrohr. Zeitschrift Für Naturforschung A, 1973, 17(4): 1124-1130. doi:  10.3929/ethz-a-000093337
    [50]
    Chou K H, Lee P S, Shaw D T. Aerosol agglomeration in high-intensity acoustic fields. J Colloid Interface Sci, 1981, 83(2): 335-353. doi:  10.1016/0021-9797(81)90329-5
    [51]
    Tiwary R, Reethof G, Mcdaniel O H. Acoustically generated turbulence and its effect on acoustic agglomeration. J Acoust Soc Am, 1984, 76(3): 841-849. DOI:  10.1121/1.391308.
    [52]
    Volk M, Moroz W J. Sonic agglomeration of aerosol particles. Water Air Soil Poll, 1976, 5(3): 319-334. doi:  10.1007/BF00158347
    [53]
    Temkin S, Ecker G Z. Droplet pair interactions in a shock-wave flow field. J Fluid Mecm, 1989, 202: 467-497. DOI:  10.1017/S0022112089001254.
    [54]
    Zhou D, Luo Z Y, Jiang J P, et al. Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment. Powder Technol, 2016, 289: 52-59. DOI:  10.1016/j.powtec.2015.11.009.
    [55]
    Liu J Z, Zhang G X, Zhou J H, et al. Experimental study of acoustic agglomeration of coal-fired fly ash particles at low frequencies. Powder Technol, 2009, 193(1): 20-25. doi:  10.1016/j.powtec.2009.02.002
    [56]
    Li K, Wang E L, Wang Q, et al. Improving the removal of inhalable particles by combining flue gas condensation and acoustic agglomeration. J Clean Prod, 2020, 261. DOI:  10.1016/j.jclepro.2020.121270.
    [57]
    Zhang G X, Ma Z F, Shen J, et al. Experimental study on eliminating fire smokes using acoustic agglomeration technology. J Hazardous Materials, 2020, 382. DOI:  10.1016/j.jhazmat.2019.121089.
    [58]
    Zhang G X, Zhang L L, Wang J, et al. Improving acoustic agglomeration efficiency by addition of sprayed liquid droplets. Powder Technol, 2017, 317: 181-188. DOI:  10.1016/j.powtec.2017.04.058.
    [59]
    Gallego-Juarez J A, De Sarabia E R F, Rodriguez-Corral G, et al. Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants. Environ Sci Technol, 1999, 33(21): 3843-3849. doi:  10.1021/es990002n
    [60]
    Zhao B, Yao G, Yang L J, et al. Comparison of dynamical behavior between fine particles and aggregates from coal combustion. Proceedings of the CSEE, 2007, 27(8): 1-4. doi:  10.3321/j.issn:0258-8013.2007.08.001
    [61]
    Kang Y B, Zhu Y J, Lin F, et al. Influencing factors of acoustic agglomeration of ultrafine particles. Journal of Shanghai Jiao Tong University, 2016, 50(4): 551-556. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201604012.htm
    [62]
    Zhang G X, Zhou T T, Zhang L L, et al. Improving acoustic agglomeration efficiency of coal-fired fly-ash particles by addition of liquid binders. Chem Eng J, 2018, 334: 891-899. DOI:  10.1016/j.cej.2017.10.126.
    [63]
    Tiwary R, Reethof G. Numerical simulation of acoustic agglomeration and experimental verification. J Vib Acoust, 1987, 109(2): 185-191. doi:  10.1115/1.3269412
    [64]
    Ezekoye O A, Wibowo Y W. Simulation of acoustic agglomeration processes using a sectional algorithm. J Aerosol Sci, 1999, 30(9): 1117-1138. doi:  10.1016/S0021-8502(98)00778-2
    [65]
    Wang Z B, Zhong X H, Yan Y X, et al. Particles collision model of PM2.5 in sound field. Chinese Journal of Environmental Engineering, 2011, 5(12): 2839-2843. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201112039.htm
    [66]
    Markauskas D, KacIanauskas R, Maknickas A. Numerical particle-based analysis of the effects responsible for acoustic particle agglomeration. Adv Powder Technol, 2015, 26(3): 698-704. doi:  10.1016/j.apt.2014.12.008
    [67]
    Lu M S, Fang M X, He M C, et al. Insights into agglomeration and separation of fly-ash particles in a sound wave field. RSC Advances, 2019, 9(9): 5224-5233. doi:  10.1039/C8RA09581G
    [68]
    Shi Y, Wei J H, Qiu J, et al. Numerical study of acoustic agglomeration process of droplet aerosol using a three-dimensional CFD-DEM coupled model. Powder Technol, 2020, 362: 37-53. DOI:  10.1016/jpowtec.2019.12.017.
    [69]
    Silva G T, Bruus H. Acoustic interaction forces between small particles in an ideal fluid. Phys Rev E, 2014, 90(6). DOI:  10.1103/PhysRevE.90.063007.
    [70]
    Maknickas A, Markauskas D, Kacianauskas R. Discrete element simulating the hydrodynamic effects in acoustic agglomeration of micron-sized particles. Particulate Science and Technology, 2016, 34(4): 453-460. doi:  10.1080/02726351.2016.1156793
    [71]
    Danilov S D, Mironov M A. Radiation pressure force acting on a small particles in a sound field. Soviet Physics Acoustics-Ussr, 1984, 30(4): 280-283. http://www.researchgate.net/publication/279622970_RADIATION_PRESSURE_FORCE_ACTING_ON_A_SMALL_PARTICLE_IN_A_SOUND_FIELD
    [72]
    Temkin S. Elements of Acoustics. New York: John Wiley and Sons, 1981: 445-454.
    [73]
    Song L, Koopmann G H, Hoffmann T L. An improved theoretical model of acoustic agglomeration. J Vib Acoust, 1994, 116(2): 208-214. doi:  10.1115/1.2930414
    [74]
    Fan F X, Zhang M J, Peng Z B, et al. Direct simulation monte carlo method for acoustic agglomeration under standing wave condition. Aerosol Air Qual Res, 2017, 17(4): 1073-1083. doi:  10.4209/aaqr.2016.07.0322
    [75]
    Wei R J, Zhang X R, Wang Y J. Aerosol agglomeration due to forces in sound field. Journal of Nanjing University(Natural Science), 1964, 8(2): 249-265. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ196402004.htm
    [76]
    Zhang X R, Gan C M, Wei R J. Sonic dissipation of water fog-a preliminary experimental study. Journal of Nanjing University(Natural Science), 1963, 7(5): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ196305003.htm
    [77]
    Ka Q L. Physical Basis of Artificial Influence on Atmospheric Process. Translated by Hu Z J. Beijing: China Meteorological Press, 1994.
    [78]
    Chen R Z, Feng D X, Jiang G W, et al. A laboratory study of explosion effects on cloud droplets coalescence. J Appl Meteor Sci, 1992, 3(4): 410-417. http://qikan.camscma.cn/article/id/19920468
    [79]
    Xu H B, Wang S W. On the influence of acoustic vibration on the regime of air motion in the boundary layer of spherical precipitation particle falling. Acta Meteorologica Sinica, 1984, 42(4): 431-439. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198404006.htm
    [80]
    Xu H B. On the mechanical effect of explosion on air flow. Meteorological Monthly, 1979, 5(10): 26-28. DOI:  10.7519/j.issn1000-0526.1979.10.008.
    [81]
    Tabari H. Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep, 2020, 10(1): 13768. DOI:  10.1038/s41598-020-74038-4.
    [82]
    Wang Y J, Zhou B T, Ren Y Y, et al. Impacts of global climate change on China's climate security. J Appl Meteor Sci, 2016, 27(6): 750-758. doi:  10.11898/1001-7313.20160612
    [83]
    Hou S Q, Wu J, Xi B S. Experiments on acoustic dissipation of water fog at low frequency. Journal of Experiments in Fluid Mechanics, 2002, 16(4): 52-56;63. doi:  10.3969/j.issn.1672-9897.2002.04.010
    [84]
    Foster M P, Pflaum J C. Acoustic seeding. Journal of Weather Modification, 1985.
    [85]
    Galechyan G A. On acoustic stimulation of atmospheric precipitation. Technical Physics, 2005, 50(9): 1191-1194. doi:  10.1134/1.2051461
    [86]
    Li F F, Jia Y H, Wang G Q, et al. Mechanism of cloud droplet motion under sound wave actions. J Atmos Ocean Tech, 2020, 37(9): 1539-1550. doi:  10.1175/JTECH-D-19-0210.1
    [87]
    Tamara T, Svetlana A. Acoustical method and device for precipitation enhancement inside natural clouds. Sci Discov, 2015, 3: 18-25. DOI:  10.11648/j.sd.s.2015030201.13.
    [88]
    Li F F, Huang C, Xie E, et al. Microscopic experimental study on acoustic agglomeration of the droplets on wall. Therm Sci, 2020. DOI:  10.2298/TSCI200309233L.
    [89]
    Shi Y, Wei J H, Bai W W, et al. Numerical investigations of acoustic agglomeration of liquid droplet using a coupled CFD-DEM model. Adv Powder Technol, 2020, 31(6). DOI:  10.1016/j.apt.2020.04.003.
    [90]
    Fang C G, Guo X L. The microphysical structure of a heavy fog event in North China. J Appl Meteor Sci, 2019, 30(6): 700-709. doi:  10.11898/1001-7313.20190606
    [91]
    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [92]
    Xiao H, Xu H Y, Huang M Y. The study on numerical simulation on the formation of the cloud droplet spectra in cumulus clouds-Part Ⅰ: The roles of the spectra and concentrations of salt nuclei. Chin J Atmos Sci, 1988, 12(2): 121-130. doi:  10.3878/j.issn.1006-9895.1988.02.02
    [93]
    Xiao H, Xu H Y, Huang M Y. A study of numerical simulationon the formation of the cloud droplet spectra in cumulus clouds-Part Ⅱ: The roles of various collision processes, atmospheric stratifications. Chin J Atmos Sci, 1988, 12(3): 312-319. doi:  10.3878/j.issn.1006-9895.1988.03.11
    [94]
    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(4)

    Article views (3024) PDF downloads(263) Cited by()
    • Received : 2021-02-03
    • Accepted : 2021-04-29
    • Published : 2021-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint