Liu Tao, Duan Yihong, Feng Jianing, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. DOI:  10.11898/1001-7313.20210303.
Citation: Liu Tao, Duan Yihong, Feng Jianing, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. DOI:  10.11898/1001-7313.20210303.

Characteristics and Mechanisms of Long-lived Concentric Eyewalls in Typhoon Lekima in 2019

DOI: 10.11898/1001-7313.20210303
  • Received Date: 2021-02-22
  • Rev Recd Date: 2021-04-09
  • Publish Date: 2021-05-31
  • The structure change of typhoon eyewall has important influences on tropical cyclone (TC) intensity, and it brings great difficulties to TC intensity forecast. Compared to the TC with only one eyewall, the dynamic and physical processes controlling the intensity change of concentric eyewalls are much more complex. Strengthening the research on this type of typhoons is conducive to improve the understanding of the structure and intensity change of TC. Recently, the process of eyewall replacement cycle (ERC) is well understood, but the mechanism of concentric eyewalls maintenance (CEM) remains unclear. Therefore, it is necessary to use a variety of observation data, numerical model, and data assimilation methods to analyze real typhoons to further explore the mechanism of CEM.The evolution of concentric eyewalls in Typhoon Lekima in 2019 is analyzed with CIMSS microwave satellite images, Wenzhou Doppler radar in China and Ishigaki radar in Japan. Observational analysis indicates that secondary eyewall formation (SEF) happens at about 0600 UTC 8 August 2019. Unlike most concentric-eyewall typhoons, Typhoon Lekima has not undergone ERC, and the concentric eyewalls in Typhoon Lekima maintains for 35 hours.Meanwhile, a numerical experiment of Typhoon Lekima is performed using a WRF-based ensemble Kalman filtering (EnKF) data assimilation system. The evolution process of Typhoon Lekima is reproduced by the results of the analysis after assimilating the Ishigaki radar radial wind, and the simulated track, intensity, and structure are basically consistent with observational analysis. Therefore, based on the EnKF analysis fields, evolution characteristics of three-dimensional eyewalls structure in Typhoon Lekima are further analyzed. The results show that, in the initial stage of SEF, the inertial stability of the middle and lower layers of typhoon is high, and the thermal conditions of the environmental are conducive to the development of Typhoon Lekima. However, due to the strong vertical wind shear (VWS) and dry air intrusion in the mid-upper level, the outer eyewall has a weakening and asymmetric process. In addition, the maintenance mechanism of persistent concentric eyewalls is studied from the perspective of transverse circulation. The Sawyer-Eliassen diagnose is performed to investigate the transverse circulation and to reveal that the interference between the convection/subsidence couplet of the inner and outer eyewalls transverse circulation is not obvious so that the convection of the inner eyewall is not inhibited by the outer eyewall, and the inner eyewall maintains. Under the condition of strong VWS, the asymmetric outer eyewall cannot continuously enhance or contract and replace the inner eyewall, the structure of concentric eyewalls can be maintained for a long time. The structure of the outer eyewall and the distribution of transverse circulation in Typhoon Lekima play an important role in the maintenance of concentric eyewalls.
  • Fig. 1  The scanning coverage of Ishigaki radar in Japan (the blue circle) and Wenzhou radar in China(the red circle) with the best track of Typhoon Lekima from 1800 UTC 3 Aug to 1200 UTC 14 Aug in 2019(3 h interval)

    Fig. 2  The radar reflectivity in Aug 2019

    (a)Ishigaki radar in Japan at 1400 UTC 8 Aug 2019, (b)Wenzhou radar in China at 0700 UTC 9 Aug 2019

    Fig. 3  Assimilation results and observations of Typhoon Lekima on 8 Aug 2019

    (a)track from 0000 UTC to 1800 UTC, (b)minimum sea level pressure from 0600 UTC to 1800 UTC

    Fig. 4  The reflectivity of Typhoon Lekima on 8 Aug 2019

    Fig. 5  The axisymmetric tangential wind(the contour, unit:m·s-1) and diabatic heating(the shaded) on 8 Aug 2019

    Fig. 6  The axisymmetric radial wind(the contour, unit:m·s-1) and vertical velocity(the shaded) on 8 Aug 2019

    Fig. 7  The inertia stability in analysis field on 8 Aug 2019

    Fig. 8  The radar reflectivity at 2 km height in analysis field on 8 Aug 2019

    Fig. 9  The vertical wind shear on 8 Aug 2019

    Fig. 10  The relative humidity(the shaded) and wind vector(the arrow) at 500 hPa on 8 Aug 2019

    Fig. 11  The radial wind(the contour, unit:m·s-1) and vertical velocity(the shaded) for Sawyer-Eliassen diagnosis at 1500 UTC 8 Aug 2019

    (a)heated by inner and outer eyewalls, (b)heated by inner eyewall only, (c)heated by outer eyewall only

  • [1]
    Willoughby H E,Black P G.H urricane Andrew in Florida: Dynamics of a disaster. Bull Amer Meteor Soc, 1996, 77: 543-549. doi:  10.1175/1520-0477(1996)077<0543:HAIFDO>2.0.CO;2
    [2]
    Irish J L, Resio D T, Ratcliff J J. The influence of storm size on hurricane surge. J Phys Oceanogr, 2008, 38: 2003-2013. doi:  10.1175/2008JPO3727.1
    [3]
    Hawkins J D, Helveston M. Tropical Cyclone Multiple Eyewall Characteristics. 28th Conf on Hurricanes and Tropical Meteorology, Bull Amer Meteor Soc, 2008. http://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm
    [4]
    Kuo H C, Chang C P, Yang Y T, et al. Western North Pacific typhoons with concentric eyewalls. Mon Wea Rev, 2008, 137(11): 3758-3770. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071314233.html
    [5]
    Sitkowski M, Kossin J P, Rozoff C M. Intensity and structure changes during hurricane eyewall replacement cycles. Mon Wea Rev, 2011, 139: 3829-3847. doi:  10.1175/MWR-D-11-00034.1
    [6]
    Shimada U, Sawada M, Yamada H. Doppler radar analysis of the rapid intensification of Typhoon Goni(2015) after eyewall replacement. J Atmos Sci, 2018, 45: 143-162. http://adsabs.harvard.edu/abs/2018JAtS...75..143S
    [7]
    Tsujino S, Tsuboki K, Kuo H. Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven(2012). J Atmos Sci, 2017, 74: 3609-3634. doi:  10.1175/JAS-D-16-0236.1
    [8]
    Yang Y T, Kuo H C, Hendricks E A, et al. Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon Wea Rev, 2013, 141: 2632-2648. doi:  10.1175/MWR-D-12-00251.1
    [9]
    Yang Y T, Hendricks E A, Kuo H C, et al. Long-lived concentric eyewalls in Typhoon Soulik(2013). Mon Wea Rev, 2014, 142: 3365-3371. doi:  10.1175/MWR-D-14-00085.1
    [10]
    Zhang G, Perrie W. Effects of asymmetric secondary eyewall on tropical cyclone evolution in Hurricane Ike(2008). Geophys Res Lett, 2018, 45(3): 1676-1683. doi:  10.1002/2017GL076988
    [11]
    Kossin J P, Schubert W H, Montgomery M T. Unstable interaction between a hurricane's primary eyewall and a secondary ring of enhanced vorticity. J Atmos Sci, 2000, 57: 3893-3917. doi:  10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2
    [12]
    Shapiro L J, Willoughby H E. The response of balanced hurricanes to local sources of heat and momentum. J Atmos Sci, 1982, 39: 378-394. doi:  10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2
    [13]
    Huang Y H, Montgomery M T, Wu C C. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅱ: Axisymmetric dynamical processes. J Atmos Sci, 2012, 69: 662-674. doi:  10.1175/JAS-D-11-0114.1
    [14]
    Huang Y H, Wu C C, Montgomery M T. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅲ: Horizontal momentum Budget analyses. J Atmos Sci, 2018, 75: 3541-3563. doi:  10.1175/JAS-D-18-0037.1
    [15]
    Abarca S F, Montgomery M T, Braun S A, et al. On the secondary eyewall formation of Hurricane Edouard(2014). Mon Wea Rev, 2016, 144: 3321-3331. doi:  10.1175/MWR-D-15-0421.1
    [16]
    Willoughby H E, Clos J A, Shoreibah M G. Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J Atmos Sci, 1982, 39: 395-411. doi:  10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2
    [17]
    Rozoff C M, Schubert W H, Kossin J P. Some dynamical aspects of tropical cyclone concentric eyewalls. Quart J Roy Meteor Soc, 2008, 134: 583-593. doi:  10.1002/qj.237
    [18]
    Rozoff C M, Nolan D S, Kossin J P, et al. The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J Atmos Sci, 2012, 69: 2621-2643. doi:  10.1175/JAS-D-11-0326.1
    [19]
    Zhu Z, Zhu P. The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J Geophys Res Atmos, 2014, 119(13): 8049-8072. doi:  10.1002/2014JD021899
    [20]
    Zhou X, Wang B. Mechanism of concentric eyewall replacement cycles and associated intensity change. J Atmos Sci, 2011, 68: 972-988. doi:  10.1175/2011JAS3575.1
    [21]
    Guan L, Zhang Y, Ge X, et al. Preliminary analysis on influencing factors of secondary eyewall formation over Northwest Pacific. Trans Atmos Sci, 2019, 42(4): 492-501. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201904002.htm
    [22]
    Yang S, Duan Y. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202003004.htm
    [23]
    Kepert J D. How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?. J Atmos Sci, 2013, 70: 2808-2830. doi:  10.1175/JAS-D-13-046.1
    [24]
    Wang Y. How do outer spiral rainbands affect tropical cyclone structure and intensity?. J Atmos Sci, 2009, 66(5): 1250-1273. doi:  10.1175/2008JAS2737.1
    [25]
    Stern D P, Zhang F. The warm-core structure of Hurricane Earl(2010). J Atmos Sci, 2016, 73: 3305-3328. doi:  10.1175/JAS-D-15-0328.1
    [26]
    Zhou X, Wang B. Large-scale influences on secondary eyewall size. J Geophys Res, 2013, 118(19): 11088-11097. doi:  10.1002/jgrd.50605
    [27]
    Chang W, Gao W, Duan Y, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405
    [28]
    Yang T, Duan Y, Xu J, et al. Simulation of the urbanization impact on precipitation of landfalling Tropical Cyclone Nida(2016). J Appl Meteor Sci, 2018, 29(4): 410-422. doi:  10.11898/1001-7313.20180403
    [29]
    Zhang X, Zhang L, Zhou H, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. 双台风相互作用及其影响
    [30]
    Wu C C, Huang Y H, Lien G Y. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅰ: Assimilation of T-PARC data based on the ensemble Kalman filter(EnKF). Mon Wea Rev, 2012, 140: 506-527. doi:  10.1175/MWR-D-11-00057.1
    [31]
    Lin W, Lin C, Li B, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [32]
    Zhang K, Feng M, Lei D. Review of the defense work of Typhoon Lekima No. 201909. China Flood & Drought Management, 2019, 29(11): 1-3;8. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201911007.htm
    [33]
    Zhang F, Weng Y, Sippel J A, et al. Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon Wea Rev, 2009, 137(7): 2105-2125. doi:  10.1175/2009MWR2645.1
    [34]
    Kossin J P, Sitkowski M. An objective model for identifying secondary eyewall formation in hurricanes. Mon Wea Rev, 2009, 137: 876-892. doi:  10.1175/2008MWR2701.1
    [35]
    Dougherty E M, Molinari J, Rogers R F, et al. Hurricane Bonnie(1998): Maintaining intensity during high vertical wind shear and an eyewall replacement cycle. Mon Wea Rev, 2018, 146: 3383-3399. doi:  10.1175/MWR-D-18-0030.1
    [36]
    Yoshiaki M, Nolan D S, Norihiko S. A dynamical mechanism for secondary eyewall formation in tropical cyclones. J Atmos Sci, 2018, 75: 3965-3986. doi:  10.1175/JAS-D-18-0042.1
    [37]
    Zhu X, Yu H, Yin Q, et al. Satellite-based analysis of concentric eyewall replacement cycles with Super Typhoon Muifa. J Trop Meteor, 2014, 30(1): 34-44. doi:  10.3969/j.issn.1004-4965.2014.01.004
    [38]
    Huang X, Yu X, Yan L, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi:  10.11898/1001-7313.20180107
    [39]
    Fu P, Hu D, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [40]
    Feng J, Duan Y, Wan Q, et al. Improved prediction of landfalling tropical cyclone in China based on assimilation of radar radial winds with new super-observation processing. Wea Forecasting, 2020, 35(6): 2523-2539. doi:  10.1175/WAF-D-20-0002.1
    [41]
    Duan Y, Wan Q, Huang J, et al. Landfalling Tropical Cyclone Research Project (LTCRP) in China. Bull Amer Meteor Soc, 2019, 100: ES447-ES472. doi:  10.1175/BAMS-D-18-0241.1
    [42]
    Zhang F Q, Snyder C, Sun J. Tests of an ensemble Kalman filter for convective-scale data assimilation: Impact of initial estimate and observations. Mon Wea Rev, 2004, 132: 1238-1253. doi:  10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
    [43]
    Evensen G. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 2003, 53(4): 343-367. doi:  10.1007/s10236-003-0036-9
    [44]
    Feng J, Duan Y, Xu J, et al. Improving the simulation of Typhoon Mujigae(2015) based on radar data assimilation. J Appl Meteor Sci, 2017, 28(4): 399-413. doi:  10.11898/1001-7313.20170402
    [45]
    He L, Chen S, Guo Y. Observation characteristics and synoptic Mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
  • 加载中
  • -->

Catalog

    Figures(11)

    Article views (2038) PDF downloads(208) Cited by()
    • Received : 2021-02-22
    • Accepted : 2021-04-09
    • Published : 2021-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint