Citation: | Liu Tao, Duan Yihong, Feng Jianing, et al. Characteristics and mechanisms of long-lived concentric eyewalls in Typhoon Lekima in 2019. J Appl Meteor Sci, 2021, 32(3): 289-301. DOI: 10.11898/1001-7313.20210303. |
[1] |
Willoughby H E,Black P G.H urricane Andrew in Florida: Dynamics of a disaster. Bull Amer Meteor Soc, 1996, 77: 543-549. doi: 10.1175/1520-0477(1996)077<0543:HAIFDO>2.0.CO;2
|
[2] |
Irish J L, Resio D T, Ratcliff J J. The influence of storm size on hurricane surge. J Phys Oceanogr, 2008, 38: 2003-2013. doi: 10.1175/2008JPO3727.1
|
[3] |
Hawkins J D, Helveston M. Tropical Cyclone Multiple Eyewall Characteristics. 28th Conf on Hurricanes and Tropical Meteorology, Bull Amer Meteor Soc, 2008. http://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm
|
[4] |
Kuo H C, Chang C P, Yang Y T, et al. Western North Pacific typhoons with concentric eyewalls. Mon Wea Rev, 2008, 137(11): 3758-3770. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/02071314233.html
|
[5] |
Sitkowski M, Kossin J P, Rozoff C M. Intensity and structure changes during hurricane eyewall replacement cycles. Mon Wea Rev, 2011, 139: 3829-3847. doi: 10.1175/MWR-D-11-00034.1
|
[6] |
Shimada U, Sawada M, Yamada H. Doppler radar analysis of the rapid intensification of Typhoon Goni(2015) after eyewall replacement. J Atmos Sci, 2018, 45: 143-162. http://adsabs.harvard.edu/abs/2018JAtS...75..143S
|
[7] |
Tsujino S, Tsuboki K, Kuo H. Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven(2012). J Atmos Sci, 2017, 74: 3609-3634. doi: 10.1175/JAS-D-16-0236.1
|
[8] |
Yang Y T, Kuo H C, Hendricks E A, et al. Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon Wea Rev, 2013, 141: 2632-2648. doi: 10.1175/MWR-D-12-00251.1
|
[9] |
Yang Y T, Hendricks E A, Kuo H C, et al. Long-lived concentric eyewalls in Typhoon Soulik(2013). Mon Wea Rev, 2014, 142: 3365-3371. doi: 10.1175/MWR-D-14-00085.1
|
[10] |
Zhang G, Perrie W. Effects of asymmetric secondary eyewall on tropical cyclone evolution in Hurricane Ike(2008). Geophys Res Lett, 2018, 45(3): 1676-1683. doi: 10.1002/2017GL076988
|
[11] |
Kossin J P, Schubert W H, Montgomery M T. Unstable interaction between a hurricane's primary eyewall and a secondary ring of enhanced vorticity. J Atmos Sci, 2000, 57: 3893-3917. doi: 10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2
|
[12] |
Shapiro L J, Willoughby H E. The response of balanced hurricanes to local sources of heat and momentum. J Atmos Sci, 1982, 39: 378-394. doi: 10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2
|
[13] |
Huang Y H, Montgomery M T, Wu C C. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅱ: Axisymmetric dynamical processes. J Atmos Sci, 2012, 69: 662-674. doi: 10.1175/JAS-D-11-0114.1
|
[14] |
Huang Y H, Wu C C, Montgomery M T. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅲ: Horizontal momentum Budget analyses. J Atmos Sci, 2018, 75: 3541-3563. doi: 10.1175/JAS-D-18-0037.1
|
[15] |
Abarca S F, Montgomery M T, Braun S A, et al. On the secondary eyewall formation of Hurricane Edouard(2014). Mon Wea Rev, 2016, 144: 3321-3331. doi: 10.1175/MWR-D-15-0421.1
|
[16] |
Willoughby H E, Clos J A, Shoreibah M G. Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J Atmos Sci, 1982, 39: 395-411. doi: 10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2
|
[17] |
Rozoff C M, Schubert W H, Kossin J P. Some dynamical aspects of tropical cyclone concentric eyewalls. Quart J Roy Meteor Soc, 2008, 134: 583-593. doi: 10.1002/qj.237
|
[18] |
Rozoff C M, Nolan D S, Kossin J P, et al. The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J Atmos Sci, 2012, 69: 2621-2643. doi: 10.1175/JAS-D-11-0326.1
|
[19] |
Zhu Z, Zhu P. The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J Geophys Res Atmos, 2014, 119(13): 8049-8072. doi: 10.1002/2014JD021899
|
[20] |
Zhou X, Wang B. Mechanism of concentric eyewall replacement cycles and associated intensity change. J Atmos Sci, 2011, 68: 972-988. doi: 10.1175/2011JAS3575.1
|
[21] |
Guan L, Zhang Y, Ge X, et al. Preliminary analysis on influencing factors of secondary eyewall formation over Northwest Pacific. Trans Atmos Sci, 2019, 42(4): 492-501. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201904002.htm
|
[22] |
Yang S, Duan Y. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202003004.htm
|
[23] |
Kepert J D. How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?. J Atmos Sci, 2013, 70: 2808-2830. doi: 10.1175/JAS-D-13-046.1
|
[24] |
Wang Y. How do outer spiral rainbands affect tropical cyclone structure and intensity?. J Atmos Sci, 2009, 66(5): 1250-1273. doi: 10.1175/2008JAS2737.1
|
[25] |
Stern D P, Zhang F. The warm-core structure of Hurricane Earl(2010). J Atmos Sci, 2016, 73: 3305-3328. doi: 10.1175/JAS-D-15-0328.1
|
[26] |
Zhou X, Wang B. Large-scale influences on secondary eyewall size. J Geophys Res, 2013, 118(19): 11088-11097. doi: 10.1002/jgrd.50605
|
[27] |
Chang W, Gao W, Duan Y, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi: 10.11898/1001-7313.20190405
|
[28] |
Yang T, Duan Y, Xu J, et al. Simulation of the urbanization impact on precipitation of landfalling Tropical Cyclone Nida(2016). J Appl Meteor Sci, 2018, 29(4): 410-422. doi: 10.11898/1001-7313.20180403
|
[29] |
Zhang X, Zhang L, Zhou H, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. 双台风相互作用及其影响
|
[30] |
Wu C C, Huang Y H, Lien G Y. Concentric eyewall formation in Typhoon Sinlaku(2008). Part Ⅰ: Assimilation of T-PARC data based on the ensemble Kalman filter(EnKF). Mon Wea Rev, 2012, 140: 506-527. doi: 10.1175/MWR-D-11-00057.1
|
[31] |
Lin W, Lin C, Li B, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi: 10.11898/1001-7313.20160212
|
[32] |
Zhang K, Feng M, Lei D. Review of the defense work of Typhoon Lekima No. 201909. China Flood & Drought Management, 2019, 29(11): 1-3;8. https://www.cnki.com.cn/Article/CJFDTOTAL-FHKH201911007.htm
|
[33] |
Zhang F, Weng Y, Sippel J A, et al. Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon Wea Rev, 2009, 137(7): 2105-2125. doi: 10.1175/2009MWR2645.1
|
[34] |
Kossin J P, Sitkowski M. An objective model for identifying secondary eyewall formation in hurricanes. Mon Wea Rev, 2009, 137: 876-892. doi: 10.1175/2008MWR2701.1
|
[35] |
Dougherty E M, Molinari J, Rogers R F, et al. Hurricane Bonnie(1998): Maintaining intensity during high vertical wind shear and an eyewall replacement cycle. Mon Wea Rev, 2018, 146: 3383-3399. doi: 10.1175/MWR-D-18-0030.1
|
[36] |
Yoshiaki M, Nolan D S, Norihiko S. A dynamical mechanism for secondary eyewall formation in tropical cyclones. J Atmos Sci, 2018, 75: 3965-3986. doi: 10.1175/JAS-D-18-0042.1
|
[37] |
Zhu X, Yu H, Yin Q, et al. Satellite-based analysis of concentric eyewall replacement cycles with Super Typhoon Muifa. J Trop Meteor, 2014, 30(1): 34-44. doi: 10.3969/j.issn.1004-4965.2014.01.004
|
[38] |
Huang X, Yu X, Yan L, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi: 10.11898/1001-7313.20180107
|
[39] |
Fu P, Hu D, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi: 10.11898/1001-7313.20200606
|
[40] |
Feng J, Duan Y, Wan Q, et al. Improved prediction of landfalling tropical cyclone in China based on assimilation of radar radial winds with new super-observation processing. Wea Forecasting, 2020, 35(6): 2523-2539. doi: 10.1175/WAF-D-20-0002.1
|
[41] |
Duan Y, Wan Q, Huang J, et al. Landfalling Tropical Cyclone Research Project (LTCRP) in China. Bull Amer Meteor Soc, 2019, 100: ES447-ES472. doi: 10.1175/BAMS-D-18-0241.1
|
[42] |
Zhang F Q, Snyder C, Sun J. Tests of an ensemble Kalman filter for convective-scale data assimilation: Impact of initial estimate and observations. Mon Wea Rev, 2004, 132: 1238-1253. doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
|
[43] |
Evensen G. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 2003, 53(4): 343-367. doi: 10.1007/s10236-003-0036-9
|
[44] |
Feng J, Duan Y, Xu J, et al. Improving the simulation of Typhoon Mujigae(2015) based on radar data assimilation. J Appl Meteor Sci, 2017, 28(4): 399-413. doi: 10.11898/1001-7313.20170402
|
[45] |
He L, Chen S, Guo Y. Observation characteristics and synoptic Mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi: 10.11898/1001-7313.20200501
|