Lin Ailan, Gu Dejun, Peng Dongdong, et al. Climatic characteristics of regional persistent heat event in in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. DOI: 10.11898/1001-7313.20210304.
Citation: Lin Ailan, Gu Dejun, Peng Dongdong, et al. Climatic characteristics of regional persistent heat event in in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. DOI: 10.11898/1001-7313.20210304.

Climatic Characteristics of Regional Persistent Heat Event in the Eastern China During Recent 60 Years

More Information
  • Regional persistent heat event is extensively studied and its intensity is normally investigated from the view of regional average. Climatic characteristics of persistent heat event in 4 regions in the eastern China are analyzed on the basis of distinguishing historical persistent heat event in the South China, the Yangtze River, the Huanghuai and the North China, using the daily maximum temperature data of 2407 stations in China during 1961-2019. The definition index of regional persistent heat event is established, in which the proximity of high temperature stations, the spatial range, the temporal consistency, the regional climate characteristics and the universality of methods are synthesized. Average times of regional persistent heat event in the South China, the Yangtze River, the Huanghuai and the North China are 3.3, 2.8, 2.2 and 0.8 per year respectively, with an average duration of 5.1 d, 6.4 d, 5.0 d and 3.9 d for per event, and the average annual cumulative days in climatology are 16.8 d, 17.8 d, 11.0 d, 3.1 d. Both the duration and the average annual cumulative days of persistent heat event are the longest in the Yangtze River, indicating that the persistent heat event in the Yangtze River is the most serious in climatology among these regions. The average annual cumulative days of persistent heat event in the North China are the least, and it usually ends at the end of July or before. There is a significant linear growing trend in the persistent heat event index in the South China, the North China, and the Yangtze River. There are only 4 non-summer persistent heat events in the Huanghuai in recent 20 years. The difference in strength of the persistent heat event index between the Yangtze River and the South China has significant inter-decadal trends. The index in the Yangtze River is obviously stronger than that in the South China during the first period of 1961-1978, while the index in the South China is slightly stronger than that in the Yangtze River during the second period of 1979-2019. The difference of persistent heat event between these two regions changes by nearly 10 d over these years.
  • Fig  1.   Spatial correlation coefficients(the contour) of summer temperature in the eastern China with Yiyang Station in Jiangxi Province(the red dot) (the shaded denotes the positive correlation passing the test of 0.05 level.The red box is the Yangtze River domain)(a) and four domains in the eastern China(blue dots are stations; red boxes from south to north are named the South China domain, the Yangtze River domain, the Huanghuai domain and the North China domain;red dots are the reference points)(b)

    Fig  2.   Regional mean daily maximum temperature in the South China domain, the Yangtze River domain and the Huanghuai domain during Jun-Aug in 2020

    Fig  3.   Frequency and duration of persistent heat event in the South China domain, the Yangtze River domain, the Huanghuai domain and the North China domain

    Fig  4.   Occurrence time of persistent heat event during 1961-2019 in the South China domain, the Yangtze River domain, the Huanghuai domain and the North China domain

    Fig  5.   Persistent heat index in the South China domain, the Yangtze River domain, the Huanghuai domain and the North China domain during 1961-2019

    Fig  6.   Difference of persistent heat index between the Yangtze River domain and the South China domain during 1961-2019

    Fig  7.   Accumulated days for long lived heat event in the South China domain and the Yangtze River domain during 1961-2019

    Fig  8.   Accumulated days for short lived heat event in the South China domain and the Yangtze River domain during 1961-2019

    Table  1   Reference points of correlation analysis and 4 domains in the eastern China

    区域 基准点 纬度 经度 第80百分位值/℃
    华南 广东罗定 21°~26°N 105°~120°E 33.7
    长江 江西弋阳 26°~32°N 105°~122°E 33.8
    黄淮 河南郾城 32°~37°N 105°~122°E 32.5
    华北 北京通州 37°~43°N 105°~122°E 30.6
    DownLoad: CSV

    Table  2   Number and duration of persistent heat event in 4 domains in the eastern China during 1961-2019

    区域 过程总数 年平均次数 过程平均持续日数/d 最长持续日数/d
    华南 193 3.3 5.1 32
    长江 163 2.8 6.4 27
    黄淮 131 2.2 5.0 15
    华北 45 0.8 3.9 8
    DownLoad: CSV
  • [1]
    Perkins S E, Alexander L V, Nairn J R. Increasing frequency, intensity and duration of observed global heat waves and warm spells. Geophys Res Lett, 2012, 39(20): L20714. http://adsabs.harvard.edu/abs/2012GeoRL..3920714P
    [2]
    Erdenebat E, Sato T. Recent increase in heat wave frequency around Mongolia: Role of atmospheric forcing and possible influence of soil moisture deficit. Atmos Sci Lett, 2016, 17(2): 135-140. DOI: 10.1002/asl.616
    [3]
    陈辉, 黄卓, 田华, 等. 高温中暑气象等级评定方法. 应用气象学报, 2009, 20(4): 451-457. DOI: 10.3969/j.issn.1001-7313.2009.04.009

    Chen H, Huang Z, Tian H, et al. An evaluation method of heatstroke grade with meteorological approaches. J Appl Meteor Sci, 2009, 20(4): 451-457. DOI: 10.3969/j.issn.1001-7313.2009.04.009
    [4]
    叶殿秀, 尹继福, 陈正洪, 等. 1961-2010年我国夏季高温热浪的时空变化特征. 气候变化研究进展, 2013, 9(1): 15-20. DOI: 10.3969/j.issn.1673-1719.2013.01.003

    Ye D X, Yin J F, Chen Z H, et al. Spatiotemporal change characteristics of summer heatwaves in China in 1961-2010. Climate Change Research, 2013, 9(1): 15-20. DOI: 10.3969/j.issn.1673-1719.2013.01.003
    [5]
    孙建奇. 2013年北大西洋破纪录高海温与我国江淮-江南地区极端高温的关系. 科学通报, 2014, 59(27): 2714-2719. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201427010.htm

    Sun J Q. Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai-Jiangnan region of China in 2013. Chinese Science Bulletin, 2014, 59(27): 2714-2719. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201427010.htm
    [6]
    邹海波, 吴珊珊, 单九生, 等. 2013年盛夏中国中东部高温天气的成因分析. 气象学报, 2015, 73(3): 481-495. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503006.htm

    Zou H B, Wu S S, Shan J S, et al. Diagnostic study of the severe high temperature event over Mid-East China in 2013 summer. Acta Meteorologica Sinica, 2015, 73(3): 481-495. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503006.htm
    [7]
    Deng K, Yang S, Gu D, et al. Record-breaking heat wave in southern China and delayed onset of South China Sea summer monsoon driven by the Pacific subtropical high. Climate Dyn, 2020, 54: 3751-3764. DOI: 10.1007/s00382-020-05203-8
    [8]
    钱婷婷, 王迎春, 郑祉芳, 等. 造成北京连续高温的河套高压结构分析. 应用气象学报, 2005, 16(2): 167-173. DOI: 10.3969/j.issn.1001-7313.2005.02.005

    Qian T T, Wang Y C, Zheng Z F, et al. A case study of the structure of the Hetao high which caused long-lasting hot weather in Beijing. J Appl Meteor Sci, 2005, 16(2): 167-173. DOI: 10.3969/j.issn.1001-7313.2005.02.005
    [9]
    Deng K, Yang S, Ting M, et al. An intensified mode of variability modulating the summer heat waves in Eastern Europe and Northern China. Geophys Res Lett, 2018, 45(20): 11361-11369. http://www.researchgate.net/publication/328258529_An_Intensified_Mode_of_Variability_Modulating_the_Summer_Heat_Waves_in_Eastern_Europe_and_Northern_China
    [10]
    霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展. 应用气象学报, 2019, 30(2): 129-141. DOI: 10.11898/1001-7313.20190201

    Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China. J Appl Meteor Sci, 2019, 30(2): 129-141. DOI: 10.11898/1001-7313.20190201
    [11]
    杨建莹, 霍治国, 王培娟, 等. 江西早稻高温热害发生时间分布特征. 应用气象学报, 2020, 31(1): 42-51. DOI: 10.11898/1001-7313.20200104

    Yang J Y, Huo Z G, Wang P J, et al. Occurrence characteristics of early rice heat disaster in Jiangxi Province. J Appl Meteor Sci, 2020, 31(1): 42-51. DOI: 10.11898/1001-7313.20200104
    [12]
    史军, 丁一汇, 崔林丽. 华东极端高温气候特征及成因分析. 大气科学, 2009, 33(2): 347-358. DOI: 10.3878/j.issn.1006-9895.2009.02.13

    Shi J, Ding Y H, Cui L L. Climatic characteristics of extreme maximum temperature in East China and its causes. Chinese Journal of Atmospheric Sciences, 2009, 33(2): 347-358. DOI: 10.3878/j.issn.1006-9895.2009.02.13
    [13]
    Chen R, Wen Z, Lu R. Evolutions of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in South China. J Climate, 2016, 29(19): 6909-6921. DOI: 10.1175/JCLI-D-16-0160.1
    [14]
    李庆祥, 黄嘉佑. 对我国极端高温事件阈值的探讨. 应用气象学报, 2011, 22(2): 138-144. DOI: 10.3969/j.issn.1001-7313.2011.02.002

    Li Q X, Huang J Y. Threshold value on extreme high temperature event in China. J Appl Meteor Sci, 2011, 22(2): 138-144. DOI: 10.3969/j.issn.1001-7313.2011.02.002
    [15]
    方宇凌, 简茂球. 2003年夏季华南持续高温天气过程及热力诊断. 热带海洋学报, 2011, 30(3): 30-37. DOI: 10.3969/j.issn.1009-5470.2011.03.005

    Fang Y L, Jian M Q. Diagnosis study of persistent heat waves in South China during summer 2003. Journal of Tropical Oceanography, 2011, 30(3): 30-37. DOI: 10.3969/j.issn.1009-5470.2011.03.005
    [16]
    杨涵洧, 封国林. 2013年盛夏中国持续性高温事件诊断分析. 高原气象, 2016, 35(2): 484-494. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201602019.htm

    Yang H W, Feng G L. Diagnostic analyses of characteristics and causes of regional and persistent high temperature event in China. Plateau Meteorology, 2016, 35(2): 484-494. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201602019.htm
    [17]
    彭京备, 刘舸, 孙淑清. 2013年我国南方持续性高温天气及副热带高压异常维持的成因分析. 大气科学, 2016, 40(5): 897-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605002.htm

    Peng J B, Liu G, Sun S Q. An analysis on the formation of the heat wave in southern China and its relation to the anomalous western Pacific subtropical high in the summer of 2013. Chinese Journal of Atmospheric Sciences, 2016, 40(5): 897-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605002.htm
    [18]
    董晓峣, 武炳义. 江淮地区夏季高温事件与北极冷异常的动力联系. 应用气象学报, 2019, 30(4): 431-442. DOI: 10.11898/1001-7313.20190404

    Dong X X, Wu B Y. Dynamic linkages between heat wave events in Jianghuai region and Arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. DOI: 10.11898/1001-7313.20190404
    [19]
    张芳华, 陶亦为, 高辉, 等. 2018年春末南方极端持续高温及MJO影响. 大气科学学报, 2019, 42(1): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201901011.htm

    Zhang F H, Tao Y W, Gao H, et al. Persistent extreme high temperature event in southern China in late spring of 2018 and the effect of Madden-Julian Oscillation. Trans Atmos Sci, 2019, 42(1): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201901011.htm
    [20]
    唐恬, 金荣花, 彭相瑜. 2013等年夏季我国南方区域性高温天气的极端性分析. 气象, 2014, 40(10): 1207-1215. DOI: 10.7519/j.issn.1000-0526.2014.10.005

    Tang T, Jin R H, Peng X Y. Analysis on extremely high temperature over southern China in summer 2013. Meteorological Monthly, 2014, 40(10): 1207-1215. DOI: 10.7519/j.issn.1000-0526.2014.10.005
    [21]
    王国复, 叶殿秀, 张颖娴, 等. 2017年我国区域性高温过程特征及异常大气环流成因分析. 气候变化研究进展, 2018, 14(4): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201804002.htm

    Wang G F, Ye D X, Zhang Y X, et al. Characteristics and abnormal atmospheric circulation of regional high temperature process in 2017 over China. Climate Change Research, 2018, 14(4): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201804002.htm
    [22]
    金荣花, 马杰, 任宏昌, 等. 我国10~30天延伸期预报技术进展与发展对策. 地球科学进展, 2019, 34(8): 814-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201908007.htm

    Jin R H, Ma J, Ren H C, et al. Advances and development countermeasures of 10-30 days extended-range forecasting technology in China. Advances in Earth Science, 2019, 34(8): 814-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201908007.htm
    [23]
    林爱兰, 谷德军, 彭冬冬, 等. 体现大尺度特征的区域持续性强降水过程定义指标. 热带气象学报, 2020, 36(3): 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202003001.htm

    Lin A L, Gu D J, Peng D D, et al. A definition index reflecting large-scale characteristics of regional persistent heavy rainfall events. Journal of Tropical Meteorology, 2020, 36(3): 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202003001.htm
    [24]
    孙建奇, 王会军, 袁薇. 我国极端高温事件的年代际变化及其与大气环流的联系. 气候与环境研究, 2011, 16(2): 199-208. DOI: 10.3878/j.issn.1006-9585.2011.02.09

    Sun J Q, Wang H J, Yuan W. Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Climatic and Environmental Research, 2011, 16(2): 199-208. DOI: 10.3878/j.issn.1006-9585.2011.02.09
    [25]
    李纵横, 李崇银, 宋洁, 等. 1960~2011年江淮地区夏季极端高温日数的特征及成因分析. 气候与环境研究, 2015, 20(5): 511-522. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201505003.htm

    Li Z H, Li C Y, Song J, et al. An analysis of the characteristics and causes of extremely high temperature days in the Yangtze-Huaihe River basins in summer 1960-2011. Climatic and Environmental Research, 2015, 20(5): 511-522. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201505003.htm
    [26]
    张嘉仪, 钱诚. 1960-2018年中国高温热浪的线性趋势分析方法与变化趋势. 气候与环境研究, 2020, 25(3): 225-239. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH202003001.htm

    Zhang J Y, Qian C. Linear trends in occurrence of high temperature and heat waves in China for the 1960-2018 period: Method and analysis results. Climatic and Environmental Research, 2020, 25(3): 225-239. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH202003001.htm
    [27]
    方宇凌, 夏冠聪, 朱舒曼, 等. 我国南方地区持续性高温气候特征分析. 气象研究与应用, 2013, 34(增刊1): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-GXQX2013S1036.htm

    Fang Y L, Xia G C, Zhu S M, et al. Climatic analysis of persistent high temperature in South China. Journal of Meteorological Research and Application, 2013, 34(Suppl Ⅰ): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-GXQX2013S1036.htm
    [28]
    王亚伟, 翟盘茂, 田华. 近40年南方高温变化特征与2003年的高温事件. 气象, 2006, 32(10): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200610003.htm

    Wang Y W, Zhai P M, Tian H. Extreme high temperatures in southern China in 2003 under the background of climate change. Meteorological Monthly, 2006, 32(10): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200610003.htm
    [29]
    任芝花, 张志富, 孙超, 等. 全国自动气象站实时观测资料三级质量控制系统研制. 气象, 2015, 41(10): 1268-1277. DOI: 10.7519/j.issn.1000-0526.2015.10.010

    Ren Z H, Zhang Z F, Sun C. Development of three-step quality control system of real-time observation data from AWS in China. Meteorological Monthly, 2015, 41(10): 1268-1277. DOI: 10.7519/j.issn.1000-0526.2015.10.010
    [30]
    Xu W H, Li Q X, Wang X L, et al. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J Geophys Res Atmos, 2013, 118(17): 9708-9720. DOI: 10.1002/jgrd.50791
    [31]
    Davis R E. Predictability of sea-surface temperature and sea level pressure anomalies over the North Pacific Ocean. J Phys Oceanogr, 1976, 6(3): 249-266. DOI: 10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
    [32]
    Chen W. Fluctuation in Northern Hemisphere 700 mb height field associated with Southern Oscillation. Mon Wea Rev, 1982, 110(7): 808-823. DOI: 10.1175/1520-0493(1982)110<0808:FINHMH>2.0.CO;2
    [33]
    汪汇洁, 孙建华, 卫捷, 等. 近30年我国南方区域持续性暴雨过程的分类研究. 气候与环境研究, 2014, 19(6): 713-725. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201406006.htm

    Wang H J, Sun J H, Wei J, et al. Classification of persistent heavy rainfall events over southern China during recent 30 years. Climatic and Environmental Research, 2014, 19(6): 713-725. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201406006.htm
    [34]
    梁梅, 吴立广. 中国东部地区夏季极端高温的特征分析. 气象科学, 2015, 35(6): 701-709. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201506005.htm

    Liang M, Wu L G. Analysis on features of summer extreme high temperature in eastern China. Journal of the Meteorological Sciences, 2015, 35(6): 701-709. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201506005.htm
    [35]
    Ding T, Qian W, Yan Z. Changes in hot days and heat waves in China during 1961-2007. Int J Climatol, 2010, 30(10): 1452-1462. DOI: 10.1002/joc.1989
    [36]
    祝从文, 刘伯奇, 左志燕, 等. 东亚夏季风次季节变化研究进展. 应用气象学报, 2019, 30(4): 401-415. DOI: 10.11898/1001-7313.20190402

    Zhu C W, Liu B Q, Zuo Z Z, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon. J Appl Meteor Sci, 2019, 30(4): 401-415. DOI: 10.11898/1001-7313.20190402
    [37]
    彭艳玉, 刘煜, 缪育聪. 温室气体对亚洲夏季风影响的数值研究. 应用气象学报, 2021, 32(2): 245-256. DOI: 10.11898/1001-7313.20210209

    Peng Y Y, Liu Y, Miao Y C. A numerical study on impacts of greenhouse gases on Asian summer monsoon. J Appl Meteor Sci, 2021, 32(2): 245-256. DOI: 10.11898/1001-7313.20210209
    [38]
    Ren G, Ding Y, Zhao Z, et al. Recent progress in studies of climate change in China. Adv Atmos Sci, 2012, 29(5): 958-977. DOI: 10.1007/s00376-012-1200-2
    [39]
    王成刚, 魏夏潞, 严家德, 等. 气象探测环境等级评估方法及应用. 应用气象学报, 2019, 30(1): 117-128. DOI: 10.11898/1001-7313.20190111

    Wang C, Wei X L, Yan J D, et al. Grade evaluation of detectioon environment of meterological stations in Beijing. J Appl Meteor Sci, 2019, 30(1): 117-128. DOI: 10.11898/1001-7313.20190111
  • Cited by

    Periodical cited type(26)

    1. 罗碧瑜,陈金星,林立进,李思敏,罗威. 梅州市茶叶高温热害的时空变化特征. 广东气象. 2025(01): 66-69 .
    2. 林依宁,曾燕,邱新法. 南京市局地环境气温效应. 气象科学. 2025(01): 145-154 .
    3. 李启华,王钰琦,史小康,施东雷,殷蕾,李森,陆汉城,刘健文. 长时间强度维持型台风的持续性特征分析. 地球物理学报. 2025(03): 813-826 .
    4. 冯扬,秦鹏程,胡一阳,牛自耕,夏智宏. 长江流域复合极端气候事件指标及识别方法综述. 人民长江. 2025(03): 95-105 .
    5. 李欣,王培娟,唐俊贤,王旗,李扬,霍治国. 江南华南茶树高温热害等级指标及分布特征. 应用气象学报. 2024(01): 57-67 . 本站查看
    6. 韩沁哲,刘海磊,范嘉智,吴浩,陈磊士,欧小锋,韩沁真. 湖南省地表高温遥感评估指标构建和特征分析. 干旱气象. 2024(03): 367-375 .
    7. 廖胜石,陆甲,刘璐,李广桃. 2023年7月广西持续性高温天气成因及前兆信号分析. 气象研究与应用. 2024(02): 88-94 .
    8. 李蕾,吴琼,邓超. 1961—2022年中国东部高温日数区域差异特征. 气象与减灾研究. 2024(02): 104-112 .
    9. 霍治国,张海燕,李春晖,孔瑞,江梦圆. 国玉米高温热害研究进展. 应用气象学报. 2023(01): 1-14 . 本站查看
    10. 张德军,杨世琦,祝好,叶勤玉,何泽能,饶智杰. 重庆市主城都市区热岛效应定量评估. 应用气象学报. 2023(01): 91-103 . 本站查看
    11. 王荣,王遵娅,高荣,叶殿秀. 1961—2020年中国区域性高温过程的气候特征及变化趋势. 地球物理学报. 2023(02): 494-504 .
    12. 李芷卉,胡娅敏. 广东省群发性高温事件的气候特征研究. 热带气象学报. 2023(01): 37-46 .
    13. 廖蜜,张鹏,刘健,柳聪亮,白伟华,徐娜,陈林. 风云卫星的掩星干大气温度廓线精准度特征. 应用气象学报. 2023(03): 270-281 . 本站查看
    14. 齐道日娜,何立富. 2022年我国夏季极端高温阶段性特征及成因. 应用气象学报. 2023(04): 385-399 . 本站查看
    15. 彭京备,孙淑清,林大伟. 2022年8月长江流域持续性极端高温事件成因. 应用气象学报. 2023(05): 527-539 . 本站查看
    16. 郭蕾,李谢辉,刘雨亭. 城市化对川渝地区极端气候事件的影响. 应用气象学报. 2023(05): 574-585 . 本站查看
    17. 肖莺,张俊,杜良敏,任永建,高雅琦. 长江流域夏季高温年代际变化季内非一致特征及其环流异常分析. 气象. 2023(09): 1119-1130 .
    18. 张英娟,高辉,丁婷,王冀. 基于小时资料的北京高温精细化特征分析. 气象. 2023(09): 1131-1141 .
    19. 董少柔,林爱兰,董彦彤. 1961~2017年华南区域性持续高温过程年际变化成因分析. 大气科学. 2023(05): 1325-1340 .
    20. 史桂芬,朱业玉,贺付伟,孙梦仙. 1961-2020年商丘市高温时空分布特征及其对农作物的影响. 气象与环境科学. 2023(06): 17-23 .
    21. 赵琳娜,卢姝,齐丹,许东蓓,应爽. 基于全连接神经网络方法的日最高气温预报. 应用气象学报. 2022(03): 257-269 . 本站查看
    22. 蒙华月,吴雨箫,钱龙,罗云英,陈诚,许敏,邓靖瑶. 湖北省棉花生育期内涝渍高温灾害特征分析. 灌溉排水学报. 2022(07): 119-128 .
    23. 邹瑾,李君,高理,孔祥宁. 山东区域性高温的变化特征及其对增暖的响应. 气象科技. 2022(06): 802-811 .
    24. 郑艳姣,杨再强,王琳,杨世琼. 中国南方设施番茄高温热害风险区划. 应用气象学报. 2021(04): 432-442 . 本站查看
    25. 李凯伟,张继权,魏思成,刘聪,王春乙. 东北春大豆精细化气候区划. 应用气象学报. 2021(04): 408-420 . 本站查看
    26. 刘文英,孙素琴,刘冬梅,田俊. 1959—2020年江西省持续区域性高温过程特征. 气象与减灾研究. 2021(04): 251-256 .

    Other cited types(4)

Catalog

    Figures(8)  /  Tables(2)

    Article views1865 PDF downloads291 Cited by: 30
    • Received : 2021-01-17
    • Accepted : 2021-04-19
    • Published : 2021-05-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return