区域 | 基准点 | 纬度 | 经度 | 第80百分位值/℃ |
华南 | 广东罗定 | 21°~26°N | 105°~120°E | 33.7 |
长江 | 江西弋阳 | 26°~32°N | 105°~122°E | 33.8 |
黄淮 | 河南郾城 | 32°~37°N | 105°~122°E | 32.5 |
华北 | 北京通州 | 37°~43°N | 105°~122°E | 30.6 |
Citation: | Lin Ailan, Gu Dejun, Peng Dongdong, et al. Climatic characteristics of regional persistent heat event in in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. DOI: 10.11898/1001-7313.20210304. |
Fig. 1 Spatial correlation coefficients(the contour) of summer temperature in the eastern China with Yiyang Station in Jiangxi Province(the red dot) (the shaded denotes the positive correlation passing the test of 0.05 level.The red box is the Yangtze River domain)(a) and four domains in the eastern China(blue dots are stations; red boxes from south to north are named the South China domain, the Yangtze River domain, the Huanghuai domain and the North China domain;red dots are the reference points)(b)
Table 1 Reference points of correlation analysis and 4 domains in the eastern China
区域 | 基准点 | 纬度 | 经度 | 第80百分位值/℃ |
华南 | 广东罗定 | 21°~26°N | 105°~120°E | 33.7 |
长江 | 江西弋阳 | 26°~32°N | 105°~122°E | 33.8 |
黄淮 | 河南郾城 | 32°~37°N | 105°~122°E | 32.5 |
华北 | 北京通州 | 37°~43°N | 105°~122°E | 30.6 |
Table 2 Number and duration of persistent heat event in 4 domains in the eastern China during 1961-2019
区域 | 过程总数 | 年平均次数 | 过程平均持续日数/d | 最长持续日数/d |
华南 | 193 | 3.3 | 5.1 | 32 |
长江 | 163 | 2.8 | 6.4 | 27 |
黄淮 | 131 | 2.2 | 5.0 | 15 |
华北 | 45 | 0.8 | 3.9 | 8 |
[1] |
Perkins S E, Alexander L V, Nairn J R. Increasing frequency, intensity and duration of observed global heat waves and warm spells. Geophys Res Lett, 2012, 39(20): L20714. http://adsabs.harvard.edu/abs/2012GeoRL..3920714P
|
[2] |
Erdenebat E, Sato T. Recent increase in heat wave frequency around Mongolia: Role of atmospheric forcing and possible influence of soil moisture deficit. Atmos Sci Lett, 2016, 17(2): 135-140. doi: 10.1002/asl.616
|
[3] |
Chen H, Huang Z, Tian H, et al. An evaluation method of heatstroke grade with meteorological approaches. J Appl Meteor Sci, 2009, 20(4): 451-457. doi: 10.3969/j.issn.1001-7313.2009.04.009
|
[4] |
Ye D X, Yin J F, Chen Z H, et al. Spatiotemporal change characteristics of summer heatwaves in China in 1961-2010. Climate Change Research, 2013, 9(1): 15-20. doi: 10.3969/j.issn.1673-1719.2013.01.003
|
[5] |
Sun J Q. Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai-Jiangnan region of China in 2013. Chinese Science Bulletin, 2014, 59(27): 2714-2719. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201427010.htm
|
[6] |
Zou H B, Wu S S, Shan J S, et al. Diagnostic study of the severe high temperature event over Mid-East China in 2013 summer. Acta Meteorologica Sinica, 2015, 73(3): 481-495. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503006.htm
|
[7] |
Deng K, Yang S, Gu D, et al. Record-breaking heat wave in southern China and delayed onset of South China Sea summer monsoon driven by the Pacific subtropical high. Climate Dyn, 2020, 54: 3751-3764. doi: 10.1007/s00382-020-05203-8
|
[8] |
Qian T T, Wang Y C, Zheng Z F, et al. A case study of the structure of the Hetao high which caused long-lasting hot weather in Beijing. J Appl Meteor Sci, 2005, 16(2): 167-173. doi: 10.3969/j.issn.1001-7313.2005.02.005
|
[9] |
Deng K, Yang S, Ting M, et al. An intensified mode of variability modulating the summer heat waves in Eastern Europe and Northern China. Geophys Res Lett, 2018, 45(20): 11361-11369. http://www.researchgate.net/publication/328258529_An_Intensified_Mode_of_Variability_Modulating_the_Summer_Heat_Waves_in_Eastern_Europe_and_Northern_China
|
[10] |
Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China. J Appl Meteor Sci, 2019, 30(2): 129-141. doi: 10.11898/1001-7313.20190201
|
[11] |
Yang J Y, Huo Z G, Wang P J, et al. Occurrence characteristics of early rice heat disaster in Jiangxi Province. J Appl Meteor Sci, 2020, 31(1): 42-51. doi: 10.11898/1001-7313.20200104
|
[12] |
Shi J, Ding Y H, Cui L L. Climatic characteristics of extreme maximum temperature in East China and its causes. Chinese Journal of Atmospheric Sciences, 2009, 33(2): 347-358. doi: 10.3878/j.issn.1006-9895.2009.02.13
|
[13] |
Chen R, Wen Z, Lu R. Evolutions of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in South China. J Climate, 2016, 29(19): 6909-6921. doi: 10.1175/JCLI-D-16-0160.1
|
[14] |
Li Q X, Huang J Y. Threshold value on extreme high temperature event in China. J Appl Meteor Sci, 2011, 22(2): 138-144. doi: 10.3969/j.issn.1001-7313.2011.02.002
|
[15] |
Fang Y L, Jian M Q. Diagnosis study of persistent heat waves in South China during summer 2003. Journal of Tropical Oceanography, 2011, 30(3): 30-37. doi: 10.3969/j.issn.1009-5470.2011.03.005
|
[16] |
Yang H W, Feng G L. Diagnostic analyses of characteristics and causes of regional and persistent high temperature event in China. Plateau Meteorology, 2016, 35(2): 484-494. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201602019.htm
|
[17] |
Peng J B, Liu G, Sun S Q. An analysis on the formation of the heat wave in southern China and its relation to the anomalous western Pacific subtropical high in the summer of 2013. Chinese Journal of Atmospheric Sciences, 2016, 40(5): 897-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201605002.htm
|
[18] |
Dong X X, Wu B Y. Dynamic linkages between heat wave events in Jianghuai region and Arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi: 10.11898/1001-7313.20190404
|
[19] |
Zhang F H, Tao Y W, Gao H, et al. Persistent extreme high temperature event in southern China in late spring of 2018 and the effect of Madden-Julian Oscillation. Trans Atmos Sci, 2019, 42(1): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201901011.htm
|
[20] |
Tang T, Jin R H, Peng X Y. Analysis on extremely high temperature over southern China in summer 2013. Meteorological Monthly, 2014, 40(10): 1207-1215. doi: 10.7519/j.issn.1000-0526.2014.10.005
|
[21] |
Wang G F, Ye D X, Zhang Y X, et al. Characteristics and abnormal atmospheric circulation of regional high temperature process in 2017 over China. Climate Change Research, 2018, 14(4): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201804002.htm
|
[22] |
Jin R H, Ma J, Ren H C, et al. Advances and development countermeasures of 10-30 days extended-range forecasting technology in China. Advances in Earth Science, 2019, 34(8): 814-825. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201908007.htm
|
[23] |
Lin A L, Gu D J, Peng D D, et al. A definition index reflecting large-scale characteristics of regional persistent heavy rainfall events. Journal of Tropical Meteorology, 2020, 36(3): 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX202003001.htm
|
[24] |
Sun J Q, Wang H J, Yuan W. Decadal variability of the extreme hot event in China and its association with atmospheric circulations. Climatic and Environmental Research, 2011, 16(2): 199-208. doi: 10.3878/j.issn.1006-9585.2011.02.09
|
[25] |
Li Z H, Li C Y, Song J, et al. An analysis of the characteristics and causes of extremely high temperature days in the Yangtze-Huaihe River basins in summer 1960-2011. Climatic and Environmental Research, 2015, 20(5): 511-522. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201505003.htm
|
[26] |
Zhang J Y, Qian C. Linear trends in occurrence of high temperature and heat waves in China for the 1960-2018 period: Method and analysis results. Climatic and Environmental Research, 2020, 25(3): 225-239. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH202003001.htm
|
[27] |
Fang Y L, Xia G C, Zhu S M, et al. Climatic analysis of persistent high temperature in South China. Journal of Meteorological Research and Application, 2013, 34(Suppl Ⅰ): 89-91. https://www.cnki.com.cn/Article/CJFDTOTAL-GXQX2013S1036.htm
|
[28] |
Wang Y W, Zhai P M, Tian H. Extreme high temperatures in southern China in 2003 under the background of climate change. Meteorological Monthly, 2006, 32(10): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200610003.htm
|
[29] |
Ren Z H, Zhang Z F, Sun C. Development of three-step quality control system of real-time observation data from AWS in China. Meteorological Monthly, 2015, 41(10): 1268-1277. doi: 10.7519/j.issn.1000-0526.2015.10.010
|
[30] |
Xu W H, Li Q X, Wang X L, et al. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J Geophys Res Atmos, 2013, 118(17): 9708-9720. doi: 10.1002/jgrd.50791
|
[31] |
Davis R E. Predictability of sea-surface temperature and sea level pressure anomalies over the North Pacific Ocean. J Phys Oceanogr, 1976, 6(3): 249-266. doi: 10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
|
[32] |
Chen W. Fluctuation in Northern Hemisphere 700 mb height field associated with Southern Oscillation. Mon Wea Rev, 1982, 110(7): 808-823. doi: 10.1175/1520-0493(1982)110<0808:FINHMH>2.0.CO;2
|
[33] |
Wang H J, Sun J H, Wei J, et al. Classification of persistent heavy rainfall events over southern China during recent 30 years. Climatic and Environmental Research, 2014, 19(6): 713-725. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201406006.htm
|
[34] |
Liang M, Wu L G. Analysis on features of summer extreme high temperature in eastern China. Journal of the Meteorological Sciences, 2015, 35(6): 701-709. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201506005.htm
|
[35] |
Ding T, Qian W, Yan Z. Changes in hot days and heat waves in China during 1961-2007. Int J Climatol, 2010, 30(10): 1452-1462. doi: 10.1002/joc.1989
|
[36] |
Zhu C W, Liu B Q, Zuo Z Z, et al. Recent advances on sub-seasonal variability of East Asian summer monsoon. J Appl Meteor Sci, 2019, 30(4): 401-415. doi: 10.11898/1001-7313.20190402
|
[37] |
Peng Y Y, Liu Y, Miao Y C. A numerical study on impacts of greenhouse gases on Asian summer monsoon. J Appl Meteor Sci, 2021, 32(2): 245-256. doi: 10.11898/1001-7313.20210209
|
[38] |
Ren G, Ding Y, Zhao Z, et al. Recent progress in studies of climate change in China. Adv Atmos Sci, 2012, 29(5): 958-977. doi: 10.1007/s00376-012-1200-2
|
[39] |
Wang C, Wei X L, Yan J D, et al. Grade evaluation of detectioon environment of meterological stations in Beijing. J Appl Meteor Sci, 2019, 30(1): 117-128. doi: 10.11898/1001-7313.20190111
|