Yan Jiaming, Zhao Bingke, Zhang Shuai, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. DOI:  10.11898/1001-7313.20210306.
Citation: Yan Jiaming, Zhao Bingke, Zhang Shuai, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. DOI:  10.11898/1001-7313.20210306.

Observation Analysis and Application Evaluation of Wind Profile Radar to Diagnosing the Boundary Layer of Landing Typhoon

DOI: 10.11898/1001-7313.20210306
  • Received Date: 2021-01-25
  • Rev Recd Date: 2021-03-19
  • Publish Date: 2021-05-31
  • The feasibility of wind profile radar in typhoon observation is investigated with 6 cases including Feng-wong(1422), Chan-hom(1509), Nepartak(1601), Meranti(1614), Megi(1617), and Lekima(1909) during 2014 to 2019. Thirty-four groups datasets, including the Airda 3000 boundary layer wind profile radar, GPS balloon sounding and PARSIVEL laser precipitation data are analyzed.Preliminary analysis show that 30 out of 34 datasets satisfy the prerequisite condition of greater than 80% data completion. The average wind speed standard deviation of these 30 datasets is about 3.64 m·s-1 and the average difference is 4.67 m·s-1. Furthermore, 19 out of the 34 datasets achieve good results (standard deviation less than 4 m·s-1) when the observation by wind profile radar and sounding agree well above 250 m altitude, though they overlap less below that altitude. The sounding wind speed is observed to be much smaller than the wind profile radar data for altitudes below 250 m, which is possibly caused by the fact that sounding accelerates from stationary to consistent with environmental winds below 250 m altitude in typhoon environment, or by the disturbance in lower atmosphere of wind profile radar. Thus, ignoring the lowest 250 m altitude, the standard deviation of wind profile radar and balloon sounding decrease remarkably. This may imply that wind profile radar has high feasibility in boundary layer from 250 m altitude to the layer top under typhoon environment. In addition, data with lower validity are always located in the region which is about more than 200 km away from typhoon center, while the distribution of high validity data observation show no obvious pattern and locates from typhoon center to the outer region. There is also no significant relationship found between data validity and precipitation intensity. These may imply that wind profile radar have great potential under the condition of heavy precipitation and severe wind. The analysis of data with lower validity indicates that the distribution of humidity in typhoon and local disturbance cause uneven wind in the radar detection beam. In addition, because the coastal areas of Zhejiang and Fujian are mostly hilly terrain, the low-level circulation structure of typhoon is destroyed by terrain, which may also be one cause for the poor match of horizontal wind speed.Despite the limited data, wind profile radar shows a very hopeful potential and high validity in the observation and diagnosis of boundary layer even in severe convective weather environment such as typhoon inner core region.
  • Fig. 1  Typhoon tracks (pentagon is the observation location of Typhoon Fung-wong(1416) and Chan-hom(1509), cross is the observation location of Lekima(1909),rhombus is the observation location of Typhoon Meranti(1614),star is the observation location of Typhoon Nepartak(1601) and Typhoon Megi(1617))

    Fig. 2  The position of sounding relative to the observation point (polar center) at 3000 m altitude

    Fig. 3  Comparison of horizontal wind speed between wind profile radar and sounding

    Fig. 4  Comparison of horizontal wind speed between wind profile radar and sounding

    (blue solid line represents specific humidity after detrend)

    Fig. 5  First intersection height between wind profile radar and sounding

    (dashed line is average height)

    Fig. 6  Comparison of horizontal wind speed between wind profile radar and sounding

    (blue solid line represents specific humidity after detrend)

    Fig. 7  Comparison of horizontal wind speed before and after removing data below 250 m altitude between wind profile radar and sounding

    Fig. 8  Change of wind direction and wind speed in Typhoon Megi(1617)

    Fig. 9  The relative position of observation point and typhoon center(a) and its dispersion distribution with distance(b)

    (polar center is observation point)

    Fig. 10  Time series of rainfall intensity affected by different typhoon

    (dashed line represents the wind profile radar data collection time corresponding to the time when the sounding is released)

    Fig. 11  Relationship between wind profile radar data quality and rainfall intensity

    (green, black and purple dotted lines represent light rain, moderate rain and heavy rain, respectively)
    (a)standard deviation, (b)root mean squared error

    Table  1  Collection time of wind profile radar and sounding

    台风名称 风廓线雷达 探空 距台风中心距离/km
    凤凰(1416) 2014-09-22T01:00 2014-09-22T01:00 108.5
    2014-09-22T03:00 2014-09-22T03:00 77.4
    2014-09-22T05:00 2014-09-22T05:00 49.3
    2014-09-22T08:00 2014-09-22T08:00 33.9
    2014-09-22T11:00 2014-09-22T11:00 61.8
    2014-09-22T15:00 2014-09-22T15:00 112.8
    2014-09-22T18:00 2014-09-22T18:00 143.2
    灿鸿(1509) 2015-07-10T03:00 2015-07-10T03:00 439.4
    2015-07-10T06:00 2015-07-10T06:00 382.1
    2015-07-10T23:00 2015-07-10T23:00 128.0
    2015-07-11T03:00 2015-07-11T03:00 117.0
    2015-07-11T06:00 2015-07-11T06:00 133.6
    尼伯特(1601) 2016-07-09T00:50 2016-07-09T00:49 305.7
    2016-07-09T02:55 2016-07-09T02:55 300.0
    2016-07-09T08:15 2016-07-09T08:16 277.0
    2016-07-09T11:40 2016-07-09T11:41 292.9
    莫兰蒂(1614) 2016-09-14T23:35 2016-09-14T23:34 134.3
    2016-09-15T02:45 2016-09-15T02:46 185.4
    鲇鱼(1617) 2016-09-27T17:10 2016-09-27T17:10 297.7
    2016-09-27T20:05 2016-09-27T20:06 267.1
    2016-09-27T23:20 2016-09-27T23:19 268.0
    2016-09-28T01:55 2016-09-28T01:54 368.6
    利奇马(1909) 2019-08-09T02:30 2019-08-09T02:32 362.2
    2019-08-09T04:00 2019-08-09T04:00 348.3
    2019-08-09T07:00 2019-08-09T06:59 312.6
    2019-08-09T09:10 2019-08-09T09:12 290.5
    2019-08-09T11:20 2019-08-09T11:18 280.1
    2019-08-09T13:25 2019-08-09T13:23 259.1
    2019-08-09T16:00 2019-08-09T15:58 221.8
    2019-08-09T18:20 2019-08-09T18:22 201.8
    2019-08-09T21:35 2019-08-09T21:34 196.5
    2019-08-09T23:05 2019-08-09T23:07 195.3
    2019-08-10T03:50 2019-08-10T03:50 176.1
    2019-08-10T13:35 2019-08-10T13:36 231.9
    DownLoad: Download CSV
  • [1]
    Yi S M, Chen Y L. A new instrument for upper-wind measurements: Wind profiler. Meteorological Monthly, 1988, 14(11): 3-8. doi:  10.7519/j.issn.1000-0526.1988.11.001
    [2]
    Sun X Y, Han H, Duan H X, et al. Comparative analysis on wind data from atmospheric wind profiler and balloon sounding. Arid Meteorology, 2008, 26(3): 48-52. doi:  10.3969/j.issn.1006-7639.2008.03.009
    [3]
    Hu M B. Detection and Application of Wind Profiler. Beijing: China Meteorological Press, 2015.
    [4]
    Weber B L, Wuertz D B, Strauch R G, et al. Preliminary evaluation of the first NOAA demonstration network wind profiler. J Atmos Oceanic Technol, 1990, 7(6): 909-918. doi:  10.1175/1520-0426(1990)007<0909:PEOTFN>2.0.CO;2
    [5]
    Ishihara M, Kato Y, Abo T, et al. Characteristics and performance of the operational wind profiler network of the Japan Meteorological Agency. J Meteor Soc Japan, 2006, 84(6): 1085-1096. doi:  10.2151/jmsj.84.1085
    [6]
    Weber B L, Wuertz D B. Comparison of rawinsonde and wind profiler radar measurements. J Atmos Oceanic Technol, 1990, 7(1): 157-174. doi:  10.1175/1520-0426(1990)007<0157:CORAWP>2.0.CO;2
    [7]
    Wan R, Zhou Z M, Cui C G, et al. Comparing wind profiler data with radiosonde data and analyzing. Torrential Rain and Disasters, 2011, 30(2): 130-136. doi:  10.3969/j.issn.1004-9045.2011.02.005
    [8]
    Sun K Y, Ruan Z, Wei M, et al. Preliminary estimation of specific humidity profiles with wind profile radar. J Appl Meteor Sci, 2013, 24(4): 407-415. doi:  10.3969/j.issn.1001-7313.2013.04.003
    [9]
    Wang X, Bian L G, Peng H, et al. The atmospheric wind profiler and radio acoustic sounding system with its application. J Appl Meteor Sci, 2005, 16(5): 693-698. doi:  10.3969/j.issn.1001-7313.2005.05.017
    [10]
    Deng C, Ruan Z, Wei M, et al. The evaluation of wind measurement accuracy by wind profile radar. J Appl Meteor Sci, 2012, 23(5): 13-23. http://qikan.camscma.cn/article/id/20120502
    [11]
    Shapiro M A, Hample T, Kamp D W V D. Radar wind profiler observations of fronts and jet streams. Mon Wea Rev, 1984, 112(6): 1263-1266. doi:  10.1175/1520-0493(1984)112<1263:RWPOOF>2.0.CO;2
    [12]
    He P, Zhu X Y, Ruan Z, et al. Preliminary study on precipitation process detection using wind profiler radar. J Appl Meteor Sci, 2009, 20(4): 465-470. doi:  10.3969/j.issn.1001-7313.2009.04.011
    [13]
    Wuertz D B, Weber B L, Strauch R G, et al. Effects of precipitation on UHF wind profiler measurements. J Atmos Oceanic Technol, 1988, 5(3): 450-465. doi:  10.1175/1520-0426(1988)005<0450:EOPOUW>2.0.CO;2
    [14]
    Liao F, Deng H, Gao Z Q, et al. The research on boundary layer evolution characteristics of Typhoon Usagi based on observations by wind profilers. Acta Oceanologica Sinica, 2017, 36(9): 39-44. doi:  10.1007/s13131-017-1109-9
    [15]
    Wang X Y, Li D, Ren Y, et al. Preliminary analyses on application of wind profiler radar data to the landing process of Typhoon Saola. Meteorological Monthly, 2013, 39(11): 1431-1436. doi:  10.7519/j.issn.1000-0526.2013.11.006
    [16]
    Li L X, Xiao Y Q, Song L L, et al. Study on wind profile of typhoon Hagupit using wind observed tower and wind profiler radar measurements. Engineering Mechanics, 2012, 29(9): 284-293. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201209042.htm
    [17]
    May P T. Comparison of wind-profiler and radiosonde measurements in the tropics. J Atmos Oceanic Technol, 1993, 10(1): 122-127. doi:  10.1175/1520-0426(1993)010<0122:COWPAR>2.0.CO;2
    [18]
    May P T, Holland G J, Ecklund W L. Wind profiler observations of tropical storm Flo at Saipan. Wea Forecasting, 1994, 9(3): 410-426. doi:  10.1175/1520-0434(1994)009<0410:WPOOTS>2.0.CO;2
    [19]
    Yan J M, Tang J, Chen H J, et al. Application Validity of Wind Profiler in Typhoon Environment//2019 International Conference on Meteorology Observations (ICMO), Chengdu, China, 2019: 1-3.
    [20]
    Dong D B, Zhang T M, Rui B. Wind profiler radar observation error analysis of atmospheric wind fields. Meteorological Science and Technology, 2014, 42(1): 48-53. doi:  10.3969/j.issn.1671-6345.2014.01.007
    [21]
    Zhang J G. Fixed Boundary Layer Wind Profiler Radar for Meteorological Observation in the Applied Research. Beijing: Beijing University of Posts and Telecommunications, 2012.
    [22]
    Guo Q Y, Yang R K, Cheng K Q, et al. Refractive index quality control and comparative analysis of multi-source occultation based on sounding observation. J Appl Meteor Sci, 2020, 31(1): 13-26. doi:  10.11898/1001-7313.20200102
    [23]
    Liang Z H, Wang D H, Liang Z M. Spatio-temporal characteristics of boundary layer height derived from soundings. J Appl Meteor Sci, 2020, 31(4): 447-459. doi:  10.11898/1001-7313.20200407
    [24]
    Nash J, Oakley T, Vömel H, et al. WMO Intercomparison of High Quality Radiosonde Systems. Instruments and Observing Methods Report No. 107, Geneva: WMO, 2011: 66-179.
    [25]
    Bao X W, Wu L G, Tang B, et al. Variable Raindrop size distributions in different rainbands associated with Typhoon Fitow (2013). J Geophy Res Atmos, 2019, 124(22): 262-281.
    [26]
    Liao F, Deng H, Hou L. Quality Analysis and process of wind profiler data on rain condition. Journal of Tropical Meteorology, 2016, 32(5): 588-596. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201605002.htm
    [27]
    Lin X M, Wei Y H, Chen H, et al. The effect assessment of wind field inversion based on WPR in precipitation. J Appl Meteor Sci, 2020, 31(3): 361-372. doi:  10.11898/1001-7313.20200310
    [28]
    Liu R T, Ruan Z, Wei M, et. al. The analysis of influence on wind measurement by inhomogeneous wind distribution with wind profile radar. Journal of Tropical Meteorology, 2016, 32(2): 229-236. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201602009.htm
    [29]
    Wu L, Chen H B, Kang X. Self-compared precision analysis of wind profiler measurements. Meteorological Science and Technology, 2014, 42(1): 38-41. doi:  10.3969/j.issn.1671-6345.2014.01.005
    [30]
    Wang R, Zhang Q, Yue P, et. al. Summary and prospects of numerical simulation research of the atmospheric boundary layer. Advances in Earth Science, 2020, 35(4): 331-349. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202004002.htm
    [31]
    Zhang Q. Review of atmospheric boundary layer meterology. Arid Meteorology, 2003(3): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200303012.htm
    [32]
    Chen Y, Zhang N. The wind turbulence of the near-surface layer of jiangsu coastal area and its response to typhoon. J Appl Meteor Sci, 2019, 30(2): 177-190. doi:  10.11898/1001-7313.20190205
    [33]
    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (1466) PDF downloads(126) Cited by()
    • Received : 2021-01-25
    • Accepted : 2021-03-19
    • Published : 2021-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint