参数 | 数值 |
工作频率 | 35 GHz±500 MHz |
波束宽度 | 0.4° |
脉冲重复频率 | 5988~16666 Hz |
峰值功率 | 20 W |
时间分辨率 | 1 min |
空间分辨率 | 30 m |
观测资料 | Z/V/σV/R |
信号处理方式 | FFT |
Citation: | Zeng Zhengmao, Zheng Jiafeng, Yang Hui, et al. Quality control and evaluation on non-cloud echo of Ka-band cloud radar. J Appl Meteor Sci, 2021, 32(3): 347-357. DOI: 10.11898/1001-7313.20210307. |
Table 1 Major performance parameters for Ka-band millimeter wave cloud radar
参数 | 数值 |
工作频率 | 35 GHz±500 MHz |
波束宽度 | 0.4° |
脉冲重复频率 | 5988~16666 Hz |
峰值功率 | 20 W |
时间分辨率 | 1 min |
空间分辨率 | 30 m |
观测资料 | Z/V/σV/R |
信号处理方式 | FFT |
Table 2 Major parameters of 4 detection modes
参数 | 边界层模式 | 中云模式 | 高云模式 | 降水模式 |
脉冲宽度/μs | 0.2 | 8 | 24 | 0.2 |
脉冲重复频率/Hz | 16666 | 8333 | 5988 | 5988 |
驻波时间/s | 0.98 | 1.97 | 1.37 | 1.37 |
相干积累数 | 4 | 2 | 1 | 1 |
非相干积累数 | 16 | 32 | 32 | 32 |
FFT点数 | 256 | 256 | 256 | 256 |
距离分辨率/m | 30 | 30 | 30 | 30 |
有效探测高度/km | 0.12~7.5 | 1.47~7.5 | 3.87~20 | 0.12~20 |
最大不模糊速度/(m·s-1) | 8.93 | 8.93 | 12.83 | 12.83 |
速度分辨率/(cm·s-1) | 6.98 | 6.98 | 10.02 | 10.02 |
[1] |
Guo X L, Fu D H, Hu Z X. Progress in cloud physics precipitation and weather modification during 2008-2012. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 351-363. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201302013.htm
|
[2] |
Cheng Z J, Liu X X, Zhu Y P. A process of hydrometeor phase change with dual-polarimetric radar. J Appl Meteor Sci, 2009, 20(5): 594-601. doi: 10.3969/j.issn.1001-7313.2009.05.011
|
[3] |
Guo X L, Fang C G, Lu G X, et al. Progress of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[4] |
Shi L J, Xu X F, Li B, et al. Application of Doppler radar data to the landfalling Typhoon Saomai simulation. J Appl Meteor Sci, 2009, 20(3): 257-266. doi: 10.3969/j.issn.1001-7313.2009.03.001
|
[5] |
Ge J X, Wang J, Wang J H, et al. Development and application of millimeter wave weather radar. Chinese Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(5): 577-585. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201805001.htm
|
[6] |
Kollias P, Miller M A, Luke E P, et al. The atmospheric radiation measurement program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J Atmos Oceanic Technol, 2007, 24: 1199-1214. doi: 10.1175/JTECH2033.1
|
[7] |
Görsdorf U, Lehmann V, Bauter-Pfundstein M, et al. A 35-GHz polarimetric Doppler radar for long-term observations of cloud parameters-description of system and data processing. J Atmos Oceanic Technol, 2015, 32: 675-690. doi: 10.1175/JTECH-D-14-00066.1
|
[8] |
Liu L P, Zheng J F, Ruan Z, et al. Comprehensive radar observation of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J Meteor Res, 2015, 29(4): 547-561. http://www.cqvip.com/QK/88418X/201504/666234442.html
|
[9] |
Tang Y J, Ma S Q, Yang L, et al. Observation and comparison of cloud-base heights by ground-based millimeter-wave cloud radar. J Appl Meteor Sci, 2015, 26(6): 680-687. doi: 10.11898/1001-7313.20150604
|
[10] |
Zhong Z Y, Ma S Q, Yang L, et al. Progress of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2018, 29(4): 496-504. doi: 10.11898/1001-7313.20180410
|
[11] |
Tao F, Guan L, Zhang X F, et al. Veriation and vertical structure of clear-air echo by Ka-band cloud radar. J Appl Meteor Sci, 2020, 31(6): 719-728. doi: 10.11898/1001-7313.20200607
|
[12] |
Zhong L Z, Liu L P, Ge R S. Characteristics about the millimeter-wavelength radar and its status and prospect in and abroad. Advances in Earth Science, 2009, 24(4): 383-391. doi: 10.3321/j.issn:1001-8166.2009.04.004
|
[13] |
Kropfli R A, Kelly R D. Meteorological research applications of mm-wave radar. Meteorol Atmos Phys, 1996, 59: 105-121. doi: 10.1007/BF01032003
|
[14] |
Lhermitte R M. 94 GHz Doppler radar for cloud observation. J Atmos Oceanic Technol, 1987, 4: 36-48. doi: 10.1175/1520-0426(1987)004<0036:AGDRFC>2.0.CO;2
|
[15] |
Sun H, Liu L P, Zheng J F. Comparison of Doppler spectral density data by different bands pointing vertically radars. J Appl Meteor Sci, 2018, 28(4): 447-457. doi: 10.11898/1001-7313.20170406
|
[16] |
Shang J, Guo Y, Wu Q, et al. Airborne field campaign results of Ka-band precipitation measuring radar in China. J Appl Meteor Sci, 2011, 22(5): 590-596. doi: 10.3969/j.issn.1001-7313.2011.05.009
|
[17] |
Babb D M, Verlinde J, Albrecht B A. Retrieval of cloud microphysical parameters from 94-GHz radar Dopple power spectra. J Atmos Oceanic Techol, 1999, 16: 489-503. doi: 10.1175/1520-0426(1999)016<0489:ROCMPF>2.0.CO;2
|
[18] |
Pasqualucci F, Bartram B W, Kropfli R A, et al. A millimeter-wavelength dule-polarization Doppler radar for cloud and precipitation studies. J Appl Meteor Climatol, 1983, 22(5): 758-765. doi: 10.1175/1520-0450(1983)022<0758:AMWDPD>2.0.CO;2
|
[19] |
Zhong L Z. Calibration and Capability Analysis of China New Generation of Cloud Radar-HMBQ and Its Preliminary Application in Retrieving Cloud Microphysics Parameter. Nanjing: Nanjing University of Information Science & Technology, 2009.
|
[20] |
Zong R. Studies of Cloud Macro-and Microphysical Properties using China New Generation Millimeter-wavelength Radar. Nanjing: Nanjing University of Information Science & Technology, 2013.
|
[21] |
Zheng J F. Doppler Spectral Data Processing Methods of Ka-band Multi-mode mm-wave Radar and Air Vertical Speed Retrieval in Clouds. Nanjing: Nanjing University of Information Science & Technology, 2016.
|
[22] |
Liu L P, Ding H, Dong X B, et al. Applications of QC and merged Doppler spectral density data from Ka-band cloud radar to microphysics retrieval and comparison with airplane in situ observation. Remote Sensing, 2019, 11: 1595-1613. doi: 10.3390/rs11131595
|
[23] |
Moran K P, Martner B E, Post M J, et al. An unattended cloud-profiling radar for use in climate research. Bull Amer Meteor Soc, 1998, 79: 443-455. doi: 10.1175/1520-0477(1998)079<0443:AUCPRF>2.0.CO;2
|
[24] |
Ma S D. Research on Radar Return Signal MTI and Pulse Compression. Harbin: Harbin Engineering University, 2019.
|
[25] |
Luke E P, Pavlos K, Johnson K L, et al. A technique for the automatic detection of insect clutter in cloud radar returns. J Atmos Oceanic Technol, 2008, 25(9): 1498-1513. doi: 10.1175/2007JTECHA953.1
|
[26] |
Clothiaux E E, Ackerman T P, Mace G G, et al. Objective determination of cloud heights and radar refectivities using a combination of active remote sensors at the ARM CART sites. J Appl Meteor, 2000, 39: 645-665. doi: 10.1175/1520-0450(2000)039<0645:ODOCHA>2.0.CO;2
|
[27] |
Geerts B, Miao Q. The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J Atmos Oceanic Technol, 2005, 22: 225-246. doi: 10.1175/JTECH1699.1
|
[28] |
Zheng J F, Liu L P, Zeng Z M, et al. Ka-band millimeter wave cloud radar data quality control. J Infrared Millim Waves, 2016, 35(6): 748-757. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201606018.htm
|
[29] |
Liang H H, Zhang P Y, Ge R S. Study of data processing of wind fields from Doppler radar. J Appl Meteor Sci, 2002, 13(5): 591-601. doi: 10.3969/j.issn.1001-7313.2002.05.008
|
[30] |
Cui Z H, Cheng M H, Wu Q L, et al. A technique of fast median filtering and its application to data quality control of Doppler radar. Plateau Meteorology, 2005, 24(5): 727-733. doi: 10.3321/j.issn:1000-0534.2005.05.011
|
[31] |
Liu L. Study on the Pollution Meteorological Characteristics and Simulation of Bioaerosols Dispersion over Southeast Coastal Area of China. Nanjing: Nanjing University, 2011.
|
[32] |
Lü L H, Liu W Q, Zhang T S, et al. Characteristics of boundary layer height in Jing-Jin-Ji Area based on lidar. Laser & Optoelectronics Progress, 2017, 54(1): 50-56.
|
[33] |
Jiang D H, Wang C G, Wu D, et al. Diurnal variation of atmospheric boundary layer over Wushan station, Guangzhou using wind profiler radar. Journal of Tropical Meteorology, 2013, 29(1): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201301016.htm
|