Citation: | Ma Ruiyang, Zheng Dong, Yao Wen, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369.DOI: 10.11898/1001-7313.20210308. |
Fig 1. Schematic diagram of thunderstorm cloud area identification
(red lines enclose the areas with TBB not higher than-32℃, blue lines represent the fitted ellipses for these areas, and the yellow * marks superimposed one-hour WWLLN lightning flash;red and blue solid lines represent thunderstorms, and red and blue dashed lines represent non-thunderstorms)
[1] |
Maddox R A.Mesoscale convective complexes.Bull Amer Meteor Soc,1980,61(11):1374-1400. DOI: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
|
[2] |
马禹, 王旭, 陶祖钰. 中国及其邻近地区中尺度对流系统的普查和时空分布特征. 自然科学进展, 1997, 7(6): 701-706. DOI: 10.3321/j.issn:1002-008X.1997.06.010
Ma Y, Wang X, Tao Z Y. Census and spatio-temporal distribution characteristics of mesoscale convective systems in China and its adjacent areas. Progress in Natural Science, 1997, 7(6): 701-706. DOI: 10.3321/j.issn:1002-008X.1997.06.010
|
[3] |
郑永光, 陈炯, 朱佩君. 中国及周边地区夏季中尺度对流系统分布及其日变化特征. 科学通报, 2008, 53(4): 471-481. DOI: 10.3321/j.issn:0023-074X.2008.04.015
Zheng Y G, Chen J, Zhu P J. Distribution and diurnal variation of summer mesoscale convective system in China and its adjacent areas. Science Bulletin, 2008, 53(4): 471-481. DOI: 10.3321/j.issn:0023-074X.2008.04.015
|
[4] |
祁秀香, 郑永光. 2007年夏季我国深对流活动时空分布特征. 应用气象学报, 2009, 20(3): 286-294. DOI: 10.3969/j.issn.1001-7313.2009.03.004
Qi X X, Zheng Y G. Distribution and spatiotemporal variations of deep convection over China and its vicinity during the summer of 2007. J Appl Meteor Sci, 2009, 20(3): 286-294. DOI: 10.3969/j.issn.1001-7313.2009.03.004
|
[5] |
苏爱芳, 孙景兰, 谷秀杰, 等. 河南省对流性暴雨云系特征与概念模型. 应用气象学报, 2013, 24(2): 219-229. DOI: 10.3969/j.issn.1001-7313.2013.02.010
Su A F, Sun J L, Gu X J, et al. Characteristics and conceptual models of convective rainstorm clouds in Henan Province. J Appl Meteor Sci, 2013, 24(2): 219-229. DOI: 10.3969/j.issn.1001-7313.2013.02.010
|
[6] |
Yang X, Fei J, Huang X, et al. Characteristics of mesoscale convective systems over China and its vicinity using geostationary satellite FY2. J Climate, 2015, 28(12): 4890-4907. DOI: 10.1175/JCLI-D-14-00491.1
|
[7] |
Liu C, Zipser E J. Global distribution of convection penetrating the tropical tropopause. J Geophys Res, 2005, 110(23): 1-12. DOI: 10.1029/2005JD006063/full
|
[8] |
Houze R A, Wilton D C, Smull B F. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart J Roy Meteor Soc, 2007, 133: 1389-1411. http://ci.nii.ac.jp/naid/10025262410
|
[9] |
Romatschke U, Medina S, Houze R A. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Climate, 2010, 23(2): 419-439. DOI: 10.1175/2009JCLI3140.1
|
[10] |
Wu X K, Qie X S, Yuan T. Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Science China(Earth Sciences), 2013, 56(5): 843-854. DOI: 10.1007/s11430-012-4551-8
|
[11] |
Qie X, Wu X, Yuan T, et al. Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J Climate, 2014, 27(17): 6612-6626. DOI: 10.1175/JCLI-D-14-00076.1
|
[12] |
朱士超, 袁野, 吴月, 等. 江淮地区孤立对流云统计特征. 应用气象学报, 2019, 30(6): 690-699. DOI: 10.11898/1001-7313.20190605
Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. DOI: 10.11898/1001-7313.20190605
|
[13] |
Mezuman K, Price C, Galanti E. On the spatial and temporal distribution of global thunderstorm cells. Environ Res Lett, 2014, 9(12). DOI: 10.1088/1748-9326/9/12/124023.
|
[14] |
Hutchins M L, Holzworth R H, Brundell J B. Diurnal variation of the global electric circuit from clustered thunderstorms. J Geophys Res(Space Physics), 2014, 119(1): 620-629. DOI: 10.1002/2013JA019593/full
|
[15] |
周康辉, 郑永光, 蓝渝. 基于闪电数据的雷暴识别、追踪与外推方法. 应用气象学报, 2016, 27(2): 173-181. DOI: 10.11898/1001-7313.20160205
Zhou K H, Zheng Y G, Lan Y. Flash cell identification, tracking and nowcasting with lightning data. J Appl Meteor Sci, 2016, 27(2): 173-181. DOI: 10.11898/1001-7313.20160205
|
[16] |
Liu C, Zipser E J, Cecil D J, et al. A cloud and precipitation feature database from nine years of TRMM observations. J Appl Meteor Climatol, 2008, 47(10): 2712-2728. DOI: 10.1175/2008JAMC1890.1
|
[17] |
Zipser E J, Cecil D J, Liu C, et al. Where are the most: Intense thunderstorms on Earth?. Bull Amer Meteor Soc, 2006, 87(8): 1057-1071. DOI: 10.1175/BAMS-87-8-1057
|
[18] |
Bang S D, Zipser E J. Differences in size spectra of electrified storms over land and ocean. Geophys Res Lett, 2015, 42: 6844-6851. DOI: 10.1002/2015GL065264
|
[19] |
Bang S D, Zipser E J. Seeking reasons for the differences in size spectra of electrified storms over land and ocean. J Geophys Res, 2016, 121(15): 9048-9068. DOI: 10.1002/2016JD025150
|
[20] |
李进梁, 吴学珂, 袁铁, 等. 基于TRMM卫星多传感器资料揭示的亚洲季风区雷暴时空分布特征. 地球物理学报, 2019, 62(11): 4098-4109. DOI: 10.6038/cjg2019M0687
Li J L, Wu X K, Yuan T, et al. The temporal and spatial distribution of thunderstorms in Asia Monsoon region based on the TRMM multi-sensor database. Chinese J Geophys, 2019, 62(11): 4098-4109. DOI: 10.6038/cjg2019M0687
|
[21] |
Dowden R L, Brunde J B, Rodger C J. VLF lightning location by time of group arrival (TOGA) at multiple sites. J Atmos Solar-Terr Phys, 2002, 64(7): 817-830. DOI: 10.1016/S1364-6826(02)00085-8
|
[22] |
Dowden R L, Holzworth R H, Rodger C J, et al. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antenn Propag M, 2008, 50(5): 40-60. DOI: 10.1109/MAP.2008.4674710
|
[23] |
Hutchins M L, Holzworth R H, Brundell J B, et al. Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci, 2012, 47(6): 1-9. http://ieeexplore.ieee.org/document/7776718
|
[24] |
Rudlosky S D, Shea D T. Evaluating WWLLN performance relative to TRMM/LIS. Geophys Res Lett, 2013, 40(10): 2344-2348. DOI: 10.1002/grl.50428
|
[25] |
Bürgesser R E. Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS). Quarty J Roy Meteor Soc, 2017, 143(708): 2809-2817. DOI: 10.1002/qj.3129
|
[26] |
Fan P, Zheng D, Zhang Y, et al. A Performance evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J Atmos Ocean Technol, 2018, 35(4): 927-939. DOI: 10.1175/JTECH-D-17-0144.1
|
[27] |
Boccippio D J, Koshak W J, Blakeslee R J. Performance assessment of the optical transient detector and lightning imaging sensor. Part Ⅰ: Predicted diurnal variability. J Atmos Ocean Technol, 2002, 19(9): 1318-1332. DOI: 10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2
|
[28] |
费增坪, 王洪庆, 郑永光, 等. 基于静止卫星红外云图的MCS普查研究进展及标准修订. 应用气象学报, 2008, 19(1): 82-90. DOI: 10.3969/j.issn.1001-7313.2008.01.011
Fei Z P, Wang H Q, Zheng Y G, et al. MCS census and modification of MCS definition based on geostationary satellite infrared imagery. J Appl Meteor Sci, 2008, 19(1): 82-90. DOI: 10.3969/j.issn.1001-7313.2008.01.011
|
[29] |
曹治强, 王新. 与强对流相联系的云系特征和天气背景. 应用气象学报, 2013, 24(3): 365-372. DOI: 10.3969/j.issn.1001-7313.2013.03.013
Cao Z Q, Wang X. Cloud characteristics and synoptic background associated with severe convective storms. J Appl Meteor Sci, 2013, 24(3): 365-372. DOI: 10.3969/j.issn.1001-7313.2013.03.013
|
[30] |
王新, 郭强, 陈怡羽. FY-2E资料空间响应订正及对强对流监测改进. 应用气象学报, 2016, 27(1): 102-111. DOI: 10.11898/1001-7313.20160111
Wang X, Guo Q, Chen Y Y. Performance improvement for FY-2E convection monitoring using a spatial-response matched filter method. J Appl Meteor Sci, 201627(1): 102-111. DOI: 10.11898/1001-7313.20160111
|
[31] |
冯晋勤, 刘铭, 蔡菁. 闽西山区"7·22"极端降水过程中尺度对流特征. 应用气象学报, 2018, 29(6): 748-758. DOI: 10.11898/1001-7313.20180610
Feng J Q, Liu M, Cai J. Meso-scale convective characteristics of "7·22" extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. DOI: 10.11898/1001-7313.20180610
|
[32] |
Thiel K C, Calhoun K M, Reinhart A E, et al. GLM and ABI characteristics of severe and convective storms. J Geophys Res Atmos, 2020, 125(17): 1-22. DOI: 10.1029/2020JD032858
|
[33] |
金霞. 四川盆地降水日变化特征分析及成因研究. 北京: 中国气象科学研究院, 2013.
Jin X, Study of Diurnal Cycle of Precipitation over the Sichuan Basin: Characteristics and its Causes. Beijing: Chinese Academy of Meteorological Sciences, 2013.
|
[34] |
王黉, 李英, 宋丽莉, 等. 川藏地区雷暴大风活动特征和环境因子对比. 应用气象学报, 2020, 31(4): 435-446. DOI: 10.11898/1001-7313.20200406
Wang H, Li Y, Song L L, et al. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet Region. J Appl Meteor Sci, 2020, 31(4): 435-446. DOI: 10.11898/1001-7313.20200406
|
[1] | Ren Suling, Niu Ning, Qin Danyu, Yang Bingyun, Xu Ronghan, Xian Di. Extreme Cold and Snowstorm Event in North America in February 2021 Based on Satellite Data[J]. Journal of Applied Meteorological Science, 2022, 33(6): 696-710. DOI: 10.11898/1001-7313.20220605 |
[2] | Liu Jian, Cui Peng, Xiao Meng. The Bias Analysis of FY-2G Cloud Fraction in Summer and Winter[J]. Journal of Applied Meteorological Science, 2017, 28(2): 177-188. DOI: 10.11898/1001-7313.20170205 |
[3] | Wang Xin, Guo Qiang, Chen Yiyu. Performance Improvement for FY-2E Convection Monitoring Using a Spatial-response Matched Filter Method[J]. Journal of Applied Meteorological Science, 2016, 27(1): 102-111. DOI: 10.11898/1001-7313.20160111 |
[4] | Chen Boyang, Feng Xiaohu. Disturbance of Moon to FY-2E Full Disk Images[J]. Journal of Applied Meteorological Science, 2015, 26(3): 364-368. DOI: 10.11898/1001-7313.20150312 |
[5] | Guo Yang, Lu Naimeng, Gu Songyan, He Jieying, Wang Zhenzhan. Radiometric Characteristics of FY-3C Microwave Humidity and Temperature Sounder[J]. Journal of Applied Meteorological Science, 2014, 25(4): 436-444. |
[6] | Wei Lan, Lin Manyun, Zhao Xiangang, Zhang Zhanyun. Application of the WAN Acceleration Technologies to FY-3 Satellite Data Transmission[J]. Journal of Applied Meteorological Science, 2012, 23(1): 121-128. |
[7] | Xue Chenbin, Gong Jiandong, Xue Jishan, Tao Shiwei, Zhang Hua. Height Assignment Error of FY-2E Atmospheric Motion Vectors and Its Application to Data Assimilation[J]. Journal of Applied Meteorological Science, 2011, 22(6): 681-690. |
[8] | Zhu Aijun. Analysis on Specification of FY-3 Meteorological Satellite Data Transmission[J]. Journal of Applied Meteorological Science, 2006, 17(4): 494-501. |
[9] | Rong Zhiguo, Zhang Yuxiang, Qiu Kangmu, Hu Xiuqing, Zhang Lijun. RADIOMETRIC CALIBRATION ON ORBIT FOR FY-2B METEOROLOGICAL SATELLITE' S VISIBLE CHANNELS WITH THE RADIOMETRIC CALIBRATION SITE OF DUNHUANG[J]. Journal of Applied Meteorological Science, 2004, 15(3): 266-272. |
[10] | Zhang Gong, Xu Jianmin, Huang Yibin. REMOTE SENSING OF TOTAL COLUMN PERCEPTIBLE WATER VAPOR WITH TWO SUN REFLECTANCE CHANNELS OF FY-1C SATELLITE[J]. Journal of Applied Meteorological Science, 2003, 14(4): 385-394. |
1. |
梅婵娟,王秀明,刘晓玲,万夫敬,张灿. 国内外海上雷暴研究进展. 气象. 2025(01): 1-16 .
![]() | |
2. |
朱可欣,张鸿波,郄秀书,孙竹玲,韦蕾,蒋如斌,袁善锋,徐晨. 川藏铁路不同站点的闪电活动差异及长期变化趋势. 大气科学. 2025(01): 173-184 .
![]() | |
3. |
黄怡鋆,樊亚东,王红斌,蔡力,王建国. 组合八邻域跟踪算法监测全闪电雷暴活动时空演变过程及特征. 电工技术学报. 2024(05): 1536-1547 .
![]() | |
4. |
殷启元,林蟒,杨思鹏,朱怡颖,方俏娴,杜晖,周方聪. 基于机器学习的目标点雷电安全风险预警方法研究. 热带气象学报. 2024(02): 217-225 .
![]() | |
5. |
杨艺亚,雷蕾,仲跻芹,翟亮,荆浩,郭锐. 北京地区3次对流下山增强过程的云参数特征. 应用气象学报. 2024(04): 429-443 .
![]() | |
6. |
唐国瑛,李丰全,万蓉,唐永兰,马莉,李山山. 2024年2月我国两次雨雪冰冻过程中闪电活动特征对比分析. 暴雨灾害. 2024(04): 479-489 .
![]() | |
7. |
肖海霞,张峰,王亚强,唐飞,郑玉. 基于生成对抗网络和卫星数据的云图临近预报. 应用气象学报. 2023(02): 220-233 .
![]() | |
8. |
郭雪星,瞿建华,叶凌梦,韩旻,史墨杰. 基于朴素贝叶斯的FY-4A/AGRI云检测方法. 应用气象学报. 2023(03): 282-294 .
![]() | |
9. |
马瑞阳,郑栋. 2010–2018年FY-2E全圆盘探测区域内雷暴云特征数据集. 中国科学数据(中英文网络版). 2023(02): 298-311 .
![]() | |
10. |
赵多青,谷山强,王宇,李健,王佩,李畅. 西藏高海拔地区输电线路沿线雷电地闪时空分布特征. 高电压技术. 2023(07): 3090-3101 .
![]() | |
11. |
闫琳城,张文娟,张义军,张增海,郑栋,姚雯,孙秀斌,张一旭. 南海雷暴大风时空分布及闪电和对流活动特征. 应用气象学报. 2023(04): 503-512 .
![]() | |
12. |
吴啸天,王晓妍,郑栋,张义军. 不同类型气溶胶对长三角地区地闪活动影响. 应用气象学报. 2023(05): 608-618 .
![]() | |
13. |
关雨侬,吕伟涛,齐奇,武斌,马颖,陈绿文,刘恒毅,张义军. 一次上行闪电中先导二维和三维发展特征的差异. 应用气象学报. 2023(05): 598-607 .
![]() | |
14. |
王怀乐,刘然,马明,贺俊彦,王涛. 基于云资源的青藏高原科考数据收集与传输平台设计与实现. 气象科技. 2023(05): 648-657 .
![]() | |
15. |
吴萌,谭涌波,林雨荷,王雪雯. 高建筑物对矮建筑物保护作用的三维数值模拟. 应用气象学报. 2023(06): 749-758 .
![]() | |
16. |
许伟群,吕伟涛,齐奇,樊艳峰,陈绿文,武斌,王雪娟,马颖,夏登城. 一次触发闪电金属汽化通道的亮度与电流特征. 应用气象学报. 2023(06): 739-748 .
![]() | |
17. |
张曦,黄兴友,刘新安,陆建兵,耿利宁,黄浩,甄广炬. 北京大兴国际机场相控阵雷达强对流天气监测. 应用气象学报. 2022(02): 192-204 .
![]() | |
18. |
张恒进,郑永光. 基于逐时观测的1971—2010年中国大陆雷暴气候特征. 气象学报. 2022(01): 54-66 .
![]() | |
19. |
高洋,蔡淼,曹治强,田林,王曦. “21·7”河南暴雨环境场及云的宏微观特征. 应用气象学报. 2022(06): 682-695 .
![]() | |
20. |
王金兰,俞小鼎,汤兴芝,于海敬,胡亮帆. 黄淮地区触发对流天气的干线特征. 应用气象学报. 2021(05): 592-602 .
![]() | |
21. |
夏一楠,邓猛. 大唐平阴风力发电系统雷电灾害风险评估分析与应用. 现代信息科技. 2021(10): 127-130 .
![]() |