Citation: | Ma Ruiyang, Zheng Dong, Yao Wen, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369.DOI: 10.11898/1001-7313.20210308. |
Fig. 1 Schematic diagram of thunderstorm cloud area identification
(red lines enclose the areas with TBB not higher than-32℃, blue lines represent the fitted ellipses for these areas, and the yellow * marks superimposed one-hour WWLLN lightning flash;red and blue solid lines represent thunderstorms, and red and blue dashed lines represent non-thunderstorms)
[1] |
Maddox R A.Mesoscale convective complexes.Bull Amer Meteor Soc,1980,61(11):1374-1400. doi: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
|
[2] |
Ma Y, Wang X, Tao Z Y. Census and spatio-temporal distribution characteristics of mesoscale convective systems in China and its adjacent areas. Progress in Natural Science, 1997, 7(6): 701-706. doi: 10.3321/j.issn:1002-008X.1997.06.010
|
[3] |
Zheng Y G, Chen J, Zhu P J. Distribution and diurnal variation of summer mesoscale convective system in China and its adjacent areas. Science Bulletin, 2008, 53(4): 471-481. doi: 10.3321/j.issn:0023-074X.2008.04.015
|
[4] |
Qi X X, Zheng Y G. Distribution and spatiotemporal variations of deep convection over China and its vicinity during the summer of 2007. J Appl Meteor Sci, 2009, 20(3): 286-294. doi: 10.3969/j.issn.1001-7313.2009.03.004
|
[5] |
Su A F, Sun J L, Gu X J, et al. Characteristics and conceptual models of convective rainstorm clouds in Henan Province. J Appl Meteor Sci, 2013, 24(2): 219-229. doi: 10.3969/j.issn.1001-7313.2013.02.010
|
[6] |
Yang X, Fei J, Huang X, et al. Characteristics of mesoscale convective systems over China and its vicinity using geostationary satellite FY2. J Climate, 2015, 28(12): 4890-4907. doi: 10.1175/JCLI-D-14-00491.1
|
[7] |
Liu C, Zipser E J. Global distribution of convection penetrating the tropical tropopause. J Geophys Res, 2005, 110(23): 1-12. doi: 10.1029/2005JD006063/full
|
[8] |
Houze R A, Wilton D C, Smull B F. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart J Roy Meteor Soc, 2007, 133: 1389-1411. http://ci.nii.ac.jp/naid/10025262410
|
[9] |
Romatschke U, Medina S, Houze R A. Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J Climate, 2010, 23(2): 419-439. doi: 10.1175/2009JCLI3140.1
|
[10] |
Wu X K, Qie X S, Yuan T. Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Science China(Earth Sciences), 2013, 56(5): 843-854. doi: 10.1007/s11430-012-4551-8
|
[11] |
Qie X, Wu X, Yuan T, et al. Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J Climate, 2014, 27(17): 6612-6626. doi: 10.1175/JCLI-D-14-00076.1
|
[12] |
Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi: 10.11898/1001-7313.20190605
|
[13] |
Mezuman K, Price C, Galanti E. On the spatial and temporal distribution of global thunderstorm cells. Environ Res Lett, 2014, 9(12). DOI: 10.1088/1748-9326/9/12/124023.
|
[14] |
Hutchins M L, Holzworth R H, Brundell J B. Diurnal variation of the global electric circuit from clustered thunderstorms. J Geophys Res(Space Physics), 2014, 119(1): 620-629. doi: 10.1002/2013JA019593/full
|
[15] |
Zhou K H, Zheng Y G, Lan Y. Flash cell identification, tracking and nowcasting with lightning data. J Appl Meteor Sci, 2016, 27(2): 173-181. doi: 10.11898/1001-7313.20160205
|
[16] |
Liu C, Zipser E J, Cecil D J, et al. A cloud and precipitation feature database from nine years of TRMM observations. J Appl Meteor Climatol, 2008, 47(10): 2712-2728. doi: 10.1175/2008JAMC1890.1
|
[17] |
Zipser E J, Cecil D J, Liu C, et al. Where are the most: Intense thunderstorms on Earth?. Bull Amer Meteor Soc, 2006, 87(8): 1057-1071. doi: 10.1175/BAMS-87-8-1057
|
[18] |
Bang S D, Zipser E J. Differences in size spectra of electrified storms over land and ocean. Geophys Res Lett, 2015, 42: 6844-6851. doi: 10.1002/2015GL065264
|
[19] |
Bang S D, Zipser E J. Seeking reasons for the differences in size spectra of electrified storms over land and ocean. J Geophys Res, 2016, 121(15): 9048-9068. doi: 10.1002/2016JD025150
|
[20] |
Li J L, Wu X K, Yuan T, et al. The temporal and spatial distribution of thunderstorms in Asia Monsoon region based on the TRMM multi-sensor database. Chinese J Geophys, 2019, 62(11): 4098-4109. doi: 10.6038/cjg2019M0687
|
[21] |
Dowden R L, Brunde J B, Rodger C J. VLF lightning location by time of group arrival (TOGA) at multiple sites. J Atmos Solar-Terr Phys, 2002, 64(7): 817-830. doi: 10.1016/S1364-6826(02)00085-8
|
[22] |
Dowden R L, Holzworth R H, Rodger C J, et al. World-wide lightning location using VLF propagation in the Earth-ionosphere waveguide. IEEE Antenn Propag M, 2008, 50(5): 40-60. doi: 10.1109/MAP.2008.4674710
|
[23] |
Hutchins M L, Holzworth R H, Brundell J B, et al. Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci, 2012, 47(6): 1-9. http://ieeexplore.ieee.org/document/7776718
|
[24] |
Rudlosky S D, Shea D T. Evaluating WWLLN performance relative to TRMM/LIS. Geophys Res Lett, 2013, 40(10): 2344-2348. doi: 10.1002/grl.50428
|
[25] |
Bürgesser R E. Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS). Quarty J Roy Meteor Soc, 2017, 143(708): 2809-2817. doi: 10.1002/qj.3129
|
[26] |
Fan P, Zheng D, Zhang Y, et al. A Performance evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J Atmos Ocean Technol, 2018, 35(4): 927-939. doi: 10.1175/JTECH-D-17-0144.1
|
[27] |
Boccippio D J, Koshak W J, Blakeslee R J. Performance assessment of the optical transient detector and lightning imaging sensor. Part Ⅰ: Predicted diurnal variability. J Atmos Ocean Technol, 2002, 19(9): 1318-1332. doi: 10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2
|
[28] |
Fei Z P, Wang H Q, Zheng Y G, et al. MCS census and modification of MCS definition based on geostationary satellite infrared imagery. J Appl Meteor Sci, 2008, 19(1): 82-90. doi: 10.3969/j.issn.1001-7313.2008.01.011
|
[29] |
Cao Z Q, Wang X. Cloud characteristics and synoptic background associated with severe convective storms. J Appl Meteor Sci, 2013, 24(3): 365-372. doi: 10.3969/j.issn.1001-7313.2013.03.013
|
[30] |
Wang X, Guo Q, Chen Y Y. Performance improvement for FY-2E convection monitoring using a spatial-response matched filter method. J Appl Meteor Sci, 201627(1): 102-111. doi: 10.11898/1001-7313.20160111
|
[31] |
Feng J Q, Liu M, Cai J. Meso-scale convective characteristics of "7·22" extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. doi: 10.11898/1001-7313.20180610
|
[32] |
Thiel K C, Calhoun K M, Reinhart A E, et al. GLM and ABI characteristics of severe and convective storms. J Geophys Res Atmos, 2020, 125(17): 1-22. doi: 10.1029/2020JD032858
|
[33] |
Jin X, Study of Diurnal Cycle of Precipitation over the Sichuan Basin: Characteristics and its Causes. Beijing: Chinese Academy of Meteorological Sciences, 2013.
|
[34] |
Wang H, Li Y, Song L L, et al. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet Region. J Appl Meteor Sci, 2020, 31(4): 435-446. doi: 10.11898/1001-7313.20200406
|