Citation: | Wang Jun, Wang Wenqing, Wang Hong, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. DOI: 10.11898/1001-7313.20210309. |
[1] |
Browning K A,Foote G B.Airflow and hail growth in supercell storms and some implications for hail suppression.Quart J Roy Meteor Soc,1976,102:499-533. doi: 10.1002/qj.49710243303
|
[2] |
Wang A S, Xu N Z. The studies of strongcell hailstorms. Sci Atmos Sinica, 1985, 9(3): 260-267. doi: 10.3878/j.issn.1006-9895.1985.03.06
|
[3] |
Zhang H F, Gong N H, Jia W, et al. Observational investigation of characteristics of severe convective hook echo in Pingliang Region. Sci Atmos Sinica, 1997, 21(4): 401-412. doi: 10.3878/j.issn.1006-9895.1997.04.03
|
[4] |
Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602
|
[5] |
Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi: 10.11898/1001-7313.20190605
|
[6] |
Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202006006.htm
|
[7] |
Browning K A. The structure and mechanisms of hailstorms. Meteor Monogr, 1977, 16(38): 1-36. doi: 10.1007/978-1-935704-30-0_1
|
[8] |
Zheng Y Y, Yu X D, Fang C, et al. Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor Sinica, 2004, 62(3): 317-328. doi: 10.3321/j.issn:0577-6619.2004.03.006
|
[9] |
Yu X D, Zheng Y Y, Liao Y F, et al. Observational investigation of a tornadic heavy precipitation supercell storm. Chin J Atmos Sci, 2008, 32(3): 508-522. doi: 10.3878/j.issn.1006-9895.2008.03.08
|
[10] |
Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi: 10.11898/1001-7313.20180210
|
[11] |
Seliga T A, Bringi V N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J Appl Meteor, 1976, 15(1): 69-76. doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
|
[12] |
Liu L P, Qian Y F, Wang Z J. The study of spacial distribution of phase and size of hydrometeors in cloud by dual linear polarization radar. Acta Meteor Sinica, 1996, 54(5): 590-599. doi: 10.3321/j.issn:0577-6619.1996.05.008
|
[13] |
Kumjian M R, Ryzhkov A V. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol, 2008, 47(7): 1940-1961. doi: 10.1175/2007JAMC1874.1
|
[14] |
Wang H, Wu N G, Wan Q L, et al. Analysis of S-band polar metric radar observations of a hail-producing supercell. Acta Meteor Sinica, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm
|
[15] |
Pan J W, Jiang L L, Wei M, et al. Analysis of a high precipitation supercell based on dual polarization radar observations. Acta Meteor Sinica, 2020, 78(1): 86-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001007.htm
|
[16] |
Straka J M, Mansell E R. A bulk microphysics parameterization with multiple ice precipitation categories. J Appl Meteor, 2005, 44(4): 445-466. doi: 10.1175/JAM2211.1
|
[17] |
Park H S, Ryzhkov A V, Zrnic D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748. doi: 10.1175/2008WAF2222205.1
|
[18] |
Wu C, Liu L P, Wei M, et al. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 2018, 35(3): 296-316. doi: 10.1007/s00376-017-6241-0
|
[19] |
Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309
|
[20] |
Su D B, Ma J L, Zhang Q, et al. Preliminary research on method of hail detection with X band dual linear polarization radar. Meteor Mon, 2011, 37(10): 1228-1232. doi: 10.7519/j.issn.1000-0526.2011.10.005
|
[21] |
Su R, Liao F, Zhou Q Y, et al. Research on Guangzhou "3.19" hail event based on observation by dual-polarization weather radar. J Trop Meteor, 2018, 34(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201802007.htm
|
[22] |
Feng J Q, Zhang S S, Wu C F, et al. Application of dual polarization weather radar products to severe convective weather in Fujian. Meteor Mon, 2018, 44(12): 1565-1574. doi: 10.7519/j.issn.10000526.2018.12.006
|
[23] |
Loffler-Mang M, Joss J. An optical disdrometer for measuring size and velocity of hydrometeors. J Atmos Oceanic Technol, 2000, 17(2): 130-139. doi: 10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
|
[24] |
Kruger A, Krajewski W F. Two-dimensional video disdrometer: A description. J Atmos Oceanic Technol, 2002, 19(5): 602-617. doi: 10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
|
[25] |
Tokay A, Wolff D B, Petersen W A. Evaluationof the new version of the laser-optical disdrometer, OTT Parsivel 2. J Atmos Oceanic Technol, 2014, 31(6): 1276-1288. doi: 10.1175/JTECH-D-13-00174.1
|
[26] |
Atlas D, Ulbrich C W. An observationally based conceptual model of warm oceanic convective rain in the tropics. J Climate Appl Meteor, 2000, 39(12): 2165-2181. doi: 10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2
|
[27] |
Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteorol Climatol, 2007, 46(11): 1777-1791. doi: 10.1175/2007JAMC1649.1
|
[28] |
Schuur T J, Ryzhkov A V, Zrnić D S, et al. Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J Appl Meteor, 2001, 40(6): 1019-1034. doi: 10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2
|
[29] |
Friedrich K, Kalina E A, Masters F J, et al. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon Wea Rev, 2013, 141(4): 1182-1203. doi: 10.1175/MWR-D-12-00116.1
|
[30] |
Yue Z G, Liang G. Characteristics of precipitation particles in a hailstorm process in Weibei area of Shaanxi Province. Plateau Meteor, 2018, 37(6): 1716-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201806022.htm
|
[31] |
Tao T, Zhang L X, Sang J R, et al. A case analysis of microphysical characteristics of atypical hail formation over Liupan Mountain, China. Arid Land and Geography, 2020, 43(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202002003.htm
|
[32] |
Schmid W, Schiesser H H, Waldvogel A. The kinetic energy of hailfalls. Part Ⅳ: Patterns of hailpad and radar data. J Appl Metor, 1992, 31(10): 1165-1178. doi: 10.1175/1520-0450(1992)031<1165:TKEOHP>2.0.CO;2
|
[33] |
Niu S J, Ma L, Zhai T. Preliminary analysis of the hailstone spectra distribution and the relations between Ze and E. Acta Meteor Sinica, 1999, 57(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB902.009.htm
|
[34] |
Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[35] |
Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. doi: 10.11898/1001-7313.20200206
|
[36] |
Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508
|
[37] |
Yuter S E, Kingsmill D E, Nance L B, et al. Observations of precipitation size and fall velocity characteristics within coexisting rain and wet snow. J Appl Meteor Climatol, 2006, 45(10): 1450-1464. doi: 10.1175/JAM2406.1
|
[38] |
Battaglia A, Rustemeier E, Tokay A, et al. PARSIVEL snow observations: A critical assessment. J Atmos Oceanic Technol, 2010, 27(3): 333-344.
|
[39] |
Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi: 10.11898/1001-7313.20160610
|
[40] |
Song C, Zhou Y Q, Wu Z H. Vertical profiles of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi: 10.11898/1001-7313.20190408
|
[41] |
Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111
|
[42] |
Friedrich K, Higgins S, Masters F J, et al. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol, 2013, 30(9): 2063-2080. doi: 10.1175/JTECH-D-12-00254.1
|
[43] |
Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor, 1983, 22(10): 1764-1775. doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
|
[44] |
Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteorol, 1996, 35(3): 355-371. doi: 10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
|
[45] |
Caracciolo C, Prodi F, Battaglia A. Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm. Atmos Res, 2006, 80(2/3): 165-186. http://www.sciencedirect.com/science/article/pii/S0169809505002097
|
[46] |
Ulbrich C W, Atlas D. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J Climate Appl Meteor, 1998, 37(9): 912-923. doi: 10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2
|
[47] |
Jaffrain J, Berne A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J Hydrometeor, 2011, 12(3): 352-370. doi: 10.1175/2010JHM1244.1
|
[48] |
Beard K V. Terminal velocity adjustment for cloud and precipitation drops aloft. J Atmos Sci, 1977, 34(8): 1293-1298. doi: 10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2
|
[49] |
Tokay A, Petersen W A, Gatlin P, et al. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Oceanic Technol, 2013, 30(8): 1672-1690. doi: 10.1175/JTECH-D-12-00163.1
|
[50] |
Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. doi: 10.1029/RG011i001p00001
|
[51] |
Locatelli J D, Hobbs P V. Fall speeds and masses of solid precipitation particles. J Geophys Res, 1974, 79(15): 2185-2197. doi: 10.1029/JC079i015p02185
|
[52] |
Knight N C, Heymsfield A J. Measurement and interpretation of hailstone density and terminal velocity. J Atmos Sci, 1983, 40(6): 1510-1516. doi: 10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2
|
[53] |
Ryzhkov A V, Kumjian M R, Ganson S M, et al. Polarimetric radar characteristics of melting hail. Part Ⅰ: Theoretical simulations using spectral microphysical modeling. J Appl Meteor Climatol, 2013, 52(12): 2849-2870. doi: 10.1175/JAMC-D-13-073.1
|
[54] |
Gatlin P N, Thurai M, Bringi V N, et al. Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J Appl Meteor Climatol, 2015, 54(5): 1069-1089. doi: 10.1175/JAMC-D-14-0089.1
|
[55] |
Hu Z, Srivastava R C. Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observation. J Atmos Sci, 1995, 52(10): 1761-1783. doi: 10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2
|
[56] |
Rosenfeld D, Ulbrich C W. Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities//Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Amer Meteor Soc, 2003: 237-258.
|
[57] |
Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395. doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
|
[58] |
Atlas D, Ulbrich C W. An observationally based conceptual model of warm oceanic convective rain in the Tropics. J Appl Meteor, 2000, 39(12): 2165-2181. doi: 10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2
|
[59] |
Uijlenhoet R, Smith J A, Steiner M. The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J Atmos Sci, 2003, 60(10): 1220-1238. doi: 10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2
|