Wang Jun, Wang Wenqing, Wang Hong, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. DOI:  10.11898/1001-7313.20210309.
Citation: Wang Jun, Wang Wenqing, Wang Hong, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. DOI:  10.11898/1001-7313.20210309.

Hydrometeor Particle Characteristics During a Late Summer Hailstorm in Northern Shandong

DOI: 10.11898/1001-7313.20210309
  • Received Date: 2020-11-13
  • Rev Recd Date: 2021-01-28
  • Publish Date: 2021-05-31
  • Based on the data of PARSIVEL disdrometer, particle phase identification and reflectivity factor of CINRAD/SA-D dual polarization weather radar, a hailstorm process occurred in northern Shandong Province on 16 Aug 2019 is analyzed. The rain and hail particles are distinguished, and the evolution of the raindrop size distributions is analyzed. PPI scans at 0.5°elevation of dual polarization weather radar show that there are raindrops at Dezhou and Lingxian observational stations, while it rains heavily and hails at Linyi. As for PARSIVEL disdrometer, a small number of ice particles is identified at all three sites, and the distribution of ice particles varies dramatically. Raindrops are classified into rain or ice particles according to the particle size and falling speed. However, the observational results still need artificial verification. When the hailstorm passes over the three observational stations, ice particles are identified by PARSIVEL disdrometer. At Dezhou station, 5 ice particles are identified, including 2 large hailstones (diameter > 8 mm), 2 small hailstones (diameter between 5-8 mm) and 1 graupel particle (diameter between 2-5 mm). There are 29 ice particles in Lingxian station, including 2 large hailstones, 19 small hailstones and 8 graupel particles. At Linyi station, 17 ice particles are observed, including 10 large hailstones, 3 small hailstones and 4 graupel particles. The Z-R relation retrieved by PARSIVEL disdrometer data is Z=1523R1.21, which has a larger coefficient, but a smaller index compared with the Z-R relation of convective precipitation of the new generation Doppler radar. In the stage of increasing rain intensity in front of hailstorm, the raindrop size distributions feature low number density of small raindrops and more large raindrops, therefore the total raindrop concentration is low, and the radar reflectivity is high. Meanwhile, in the stage of rain intensity weakening, the concentration of small raindrops with a diameter less than 3.0 mm increase significantly, while that of large raindrops is relatively small. Consequently, the total raindrop concentration increases significantly with low radar reflectivity. Furthermore, there are fewer small raindrops and more large raindrops in the vicinity of the main updraft region of hailstorm, the raindrop concentration is low, and the mass weighted diameter Dm and reflectivity factor Z are high. In the downdraft region of the hailstorm, more small raindrops lead to higher total raindrop concentration and small Dm and Z.
  • Fig. 1  Jinan dual-polarization radar products of the hailstorm reflectivity factor at 0.5° elevation on 16 Aug 2019 and profile along the line of AB at 0649 BT

    Fig. 2  Particle classification scheme based on typical diameter ranges and fall velocity-diameter relationships for rain (black line), graupel (blue line) and hail (red line) in Dezhou, Lingxian and Linyi on 16 Aug 2019

    Fig. 3  The total hail spectrum distribution at Dezhou, Lingxian and Linyi

    Fig. 4  Temporal evolutions of the raindrop size distribution and integral variables measured at Dezhou, Lingxian and Linyi during the passage of the hailstorm on 16 Aug 2019

    Fig. 5  The precipitation particles spectra at Dezhou, Lingxian and Linyi on 16 Aug 2019

    Fig. 6  Average raindrop spectra at Dezhou, Lingxian and Linyi on 16 Aug 2019 with Gamma function fitting

    Fig. 7  Scatter plot of the Z-R values with R> 5 mm·h-1 on 16 Aug 2019

  • [1]
    Browning K A,Foote G B.Airflow and hail growth in supercell storms and some implications for hail suppression.Quart J Roy Meteor Soc,1976,102:499-533. doi:  10.1002/qj.49710243303
    [2]
    Wang A S, Xu N Z. The studies of strongcell hailstorms. Sci Atmos Sinica, 1985, 9(3): 260-267. doi:  10.3878/j.issn.1006-9895.1985.03.06
    [3]
    Zhang H F, Gong N H, Jia W, et al. Observational investigation of characteristics of severe convective hook echo in Pingliang Region. Sci Atmos Sinica, 1997, 21(4): 401-412. doi:  10.3878/j.issn.1006-9895.1997.04.03
    [4]
    Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602
    [5]
    Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605
    [6]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202006006.htm
    [7]
    Browning K A. The structure and mechanisms of hailstorms. Meteor Monogr, 1977, 16(38): 1-36. doi:  10.1007/978-1-935704-30-0_1
    [8]
    Zheng Y Y, Yu X D, Fang C, et al. Analysis of a strong classic supercell storm with Doppler weather radar data. Acta Meteor Sinica, 2004, 62(3): 317-328. doi:  10.3321/j.issn:0577-6619.2004.03.006
    [9]
    Yu X D, Zheng Y Y, Liao Y F, et al. Observational investigation of a tornadic heavy precipitation supercell storm. Chin J Atmos Sci, 2008, 32(3): 508-522. doi:  10.3878/j.issn.1006-9895.2008.03.08
    [10]
    Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210
    [11]
    Seliga T A, Bringi V N. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J Appl Meteor, 1976, 15(1): 69-76. doi:  10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
    [12]
    Liu L P, Qian Y F, Wang Z J. The study of spacial distribution of phase and size of hydrometeors in cloud by dual linear polarization radar. Acta Meteor Sinica, 1996, 54(5): 590-599. doi:  10.3321/j.issn:0577-6619.1996.05.008
    [13]
    Kumjian M R, Ryzhkov A V. Polarimetric signatures in supercell thunderstorms. J Appl Meteor Climatol, 2008, 47(7): 1940-1961. doi:  10.1175/2007JAMC1874.1
    [14]
    Wang H, Wu N G, Wan Q L, et al. Analysis of S-band polar metric radar observations of a hail-producing supercell. Acta Meteor Sinica, 2018, 76(1): 92-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201801007.htm
    [15]
    Pan J W, Jiang L L, Wei M, et al. Analysis of a high precipitation supercell based on dual polarization radar observations. Acta Meteor Sinica, 2020, 78(1): 86-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001007.htm
    [16]
    Straka J M, Mansell E R. A bulk microphysics parameterization with multiple ice precipitation categories. J Appl Meteor, 2005, 44(4): 445-466. doi:  10.1175/JAM2211.1
    [17]
    Park H S, Ryzhkov A V, Zrnic D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748. doi:  10.1175/2008WAF2222205.1
    [18]
    Wu C, Liu L P, Wei M, et al. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv Atmos Sci, 2018, 35(3): 296-316. doi:  10.1007/s00376-017-6241-0
    [19]
    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [20]
    Su D B, Ma J L, Zhang Q, et al. Preliminary research on method of hail detection with X band dual linear polarization radar. Meteor Mon, 2011, 37(10): 1228-1232. doi:  10.7519/j.issn.1000-0526.2011.10.005
    [21]
    Su R, Liao F, Zhou Q Y, et al. Research on Guangzhou "3.19" hail event based on observation by dual-polarization weather radar. J Trop Meteor, 2018, 34(2): 209-216. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201802007.htm
    [22]
    Feng J Q, Zhang S S, Wu C F, et al. Application of dual polarization weather radar products to severe convective weather in Fujian. Meteor Mon, 2018, 44(12): 1565-1574. doi:  10.7519/j.issn.10000526.2018.12.006
    [23]
    Loffler-Mang M, Joss J. An optical disdrometer for measuring size and velocity of hydrometeors. J Atmos Oceanic Technol, 2000, 17(2): 130-139. doi:  10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
    [24]
    Kruger A, Krajewski W F. Two-dimensional video disdrometer: A description. J Atmos Oceanic Technol, 2002, 19(5): 602-617. doi:  10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
    [25]
    Tokay A, Wolff D B, Petersen W A. Evaluationof the new version of the laser-optical disdrometer, OTT Parsivel 2. J Atmos Oceanic Technol, 2014, 31(6): 1276-1288. doi:  10.1175/JTECH-D-13-00174.1
    [26]
    Atlas D, Ulbrich C W. An observationally based conceptual model of warm oceanic convective rain in the tropics. J Climate Appl Meteor, 2000, 39(12): 2165-2181. doi:  10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2
    [27]
    Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteorol Climatol, 2007, 46(11): 1777-1791. doi:  10.1175/2007JAMC1649.1
    [28]
    Schuur T J, Ryzhkov A V, Zrnić D S, et al. Drop size distributions measured by a 2D video disdrometer: Comparison with dual-polarization radar data. J Appl Meteor, 2001, 40(6): 1019-1034. doi:  10.1175/1520-0450(2001)040<1019:DSDMBA>2.0.CO;2
    [29]
    Friedrich K, Kalina E A, Masters F J, et al. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon Wea Rev, 2013, 141(4): 1182-1203. doi:  10.1175/MWR-D-12-00116.1
    [30]
    Yue Z G, Liang G. Characteristics of precipitation particles in a hailstorm process in Weibei area of Shaanxi Province. Plateau Meteor, 2018, 37(6): 1716-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201806022.htm
    [31]
    Tao T, Zhang L X, Sang J R, et al. A case analysis of microphysical characteristics of atypical hail formation over Liupan Mountain, China. Arid Land and Geography, 2020, 43(2): 299-307. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL202002003.htm
    [32]
    Schmid W, Schiesser H H, Waldvogel A. The kinetic energy of hailfalls. Part Ⅳ: Patterns of hailpad and radar data. J Appl Metor, 1992, 31(10): 1165-1178. doi:  10.1175/1520-0450(1992)031<1165:TKEOHP>2.0.CO;2
    [33]
    Niu S J, Ma L, Zhai T. Preliminary analysis of the hailstone spectra distribution and the relations between Ze and E. Acta Meteor Sinica, 1999, 57(2): 217-225. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB902.009.htm
    [34]
    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [35]
    Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. doi:  10.11898/1001-7313.20200206
    [36]
    Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi:  10.11898/1001-7313.20200508
    [37]
    Yuter S E, Kingsmill D E, Nance L B, et al. Observations of precipitation size and fall velocity characteristics within coexisting rain and wet snow. J Appl Meteor Climatol, 2006, 45(10): 1450-1464. doi:  10.1175/JAM2406.1
    [38]
    Battaglia A, Rustemeier E, Tokay A, et al. PARSIVEL snow observations: A critical assessment. J Atmos Oceanic Technol, 2010, 27(3): 333-344.
    [39]
    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [40]
    Song C, Zhou Y Q, Wu Z H. Vertical profiles of raindrop size distribution observed by micro rain radar. J Appl Meteor Sci, 2019, 30(4): 479-490. doi:  10.11898/1001-7313.20190408
    [41]
    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
    [42]
    Friedrich K, Higgins S, Masters F J, et al. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol, 2013, 30(9): 2063-2080. doi:  10.1175/JTECH-D-12-00254.1
    [43]
    Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor, 1983, 22(10): 1764-1775. doi:  10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [44]
    Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteorol, 1996, 35(3): 355-371. doi:  10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
    [45]
    Caracciolo C, Prodi F, Battaglia A. Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm. Atmos Res, 2006, 80(2/3): 165-186. http://www.sciencedirect.com/science/article/pii/S0169809505002097
    [46]
    Ulbrich C W, Atlas D. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J Climate Appl Meteor, 1998, 37(9): 912-923. doi:  10.1175/1520-0450(1998)037<0912:RMARPA>2.0.CO;2
    [47]
    Jaffrain J, Berne A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J Hydrometeor, 2011, 12(3): 352-370. doi:  10.1175/2010JHM1244.1
    [48]
    Beard K V. Terminal velocity adjustment for cloud and precipitation drops aloft. J Atmos Sci, 1977, 34(8): 1293-1298. doi:  10.1175/1520-0469(1977)034<1293:TVAFCA>2.0.CO;2
    [49]
    Tokay A, Petersen W A, Gatlin P, et al. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Oceanic Technol, 2013, 30(8): 1672-1690. doi:  10.1175/JTECH-D-12-00163.1
    [50]
    Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys, 1973, 11(1): 1-35. doi:  10.1029/RG011i001p00001
    [51]
    Locatelli J D, Hobbs P V. Fall speeds and masses of solid precipitation particles. J Geophys Res, 1974, 79(15): 2185-2197. doi:  10.1029/JC079i015p02185
    [52]
    Knight N C, Heymsfield A J. Measurement and interpretation of hailstone density and terminal velocity. J Atmos Sci, 1983, 40(6): 1510-1516. doi:  10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2
    [53]
    Ryzhkov A V, Kumjian M R, Ganson S M, et al. Polarimetric radar characteristics of melting hail. Part Ⅰ: Theoretical simulations using spectral microphysical modeling. J Appl Meteor Climatol, 2013, 52(12): 2849-2870. doi:  10.1175/JAMC-D-13-073.1
    [54]
    Gatlin P N, Thurai M, Bringi V N, et al. Searching for large raindrops: A global summary of two-dimensional video disdrometer observations. J Appl Meteor Climatol, 2015, 54(5): 1069-1089. doi:  10.1175/JAMC-D-14-0089.1
    [55]
    Hu Z, Srivastava R C. Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observation. J Atmos Sci, 1995, 52(10): 1761-1783. doi:  10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2
    [56]
    Rosenfeld D, Ulbrich C W. Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities//Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. Amer Meteor Soc, 2003: 237-258.
    [57]
    Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395. doi:  10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
    [58]
    Atlas D, Ulbrich C W. An observationally based conceptual model of warm oceanic convective rain in the Tropics. J Appl Meteor, 2000, 39(12): 2165-2181. doi:  10.1175/1520-0450(2001)040<2165:AOBCMO>2.0.CO;2
    [59]
    Uijlenhoet R, Smith J A, Steiner M. The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra. J Atmos Sci, 2003, 60(10): 1220-1238. doi:  10.1175/1520-0469(2003)60<1220:TMSOEP>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (1442) PDF downloads(173) Cited by()
    • Received : 2020-11-13
    • Accepted : 2021-01-28
    • Published : 2021-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint