生产水平 | 产量层次 | 影响因素 | 意义 |
潜在生产水平 | 光温产量潜力Yp | 辐射、温度 | 作物产量的上限 |
雨养潜在生产水平 | 气候产量潜力Ycp | 辐射、温度、降水 | 没有灌溉条件地区作物产量的上限 |
气候-土壤潜在生产水平 | 气候-土壤产量潜力Ycsp | 辐射、温度、降水、土壤 | 当地气候资源和土壤因素决定的产量 |
Citation: | Sun Shuang, Wang Chunyi, Song Yanling, et al. Distributions of high and stable yield zones for potato in the single-cropping region in northern China. J Appl Meteor Sci, 2021, 32(4): 385-396. DOI: 10.11898/1001-7313.20210401. |
Table 1 The definition of yield potentials and influencing factors under different production levels
生产水平 | 产量层次 | 影响因素 | 意义 |
潜在生产水平 | 光温产量潜力Yp | 辐射、温度 | 作物产量的上限 |
雨养潜在生产水平 | 气候产量潜力Ycp | 辐射、温度、降水 | 没有灌溉条件地区作物产量的上限 |
气候-土壤潜在生产水平 | 气候-土壤产量潜力Ycsp | 辐射、温度、降水、土壤 | 当地气候资源和土壤因素决定的产量 |
Table 2 Scenarios to simulate the yield potentials under different production levels in the APSIM-Potato
产量层次 | 品种 | 土壤 | 管理 | |
灌溉 | 施肥 | |||
光温产量潜力Yp | 克新一号 | 适宜 | 充分 | 充分 |
气候产量潜力Ycp | 克新一号 | 适宜 | 雨养 | 充分 |
气候-土壤产量潜力Ycsp | 克新一号 | 实际 | 雨养 | 充分 |
Table 3 Cropping areas and proportions of yield level zones and yield stability zones under different production levels
区域 | 潜在生产水平 | 雨养潜在生产水平 | 气候-土壤潜在生产水平 | |||||
面积/(106 km2) | 比例/% | 面积/(106 km2) | 比例/% | 面积/(106 km2) | 比例/% | |||
高产区 | 3.31 | 66 | 1.70 | 34 | 1.53 | 31 | ||
低产区 | 1.69 | 34 | 3.30 | 66 | 3.47 | 69 | ||
高稳区 | 3.10 | 62 | 1.43 | 29 | 1.27 | 25 | ||
低稳区 | 1.90 | 38 | 3.57 | 71 | 3.73 | 75 |
Table 4 Cropping areas and proportions of high-stable zones for potato under different production levels in the study region
区域 | 潜在生产水平 | 雨养潜在生产水平 | 气候-土壤潜在生产水平 | |||||
面积/(106 km2) | 比例/% | 面积/(106 km2) | 比例/% | 面积/(106 km2) | 比例/% | |||
高产高稳区 | 1.99 | 40 | 1.26 | 25 | 0.65 | 13 | ||
高产低稳区 | 1.21 | 24 | 0.42 | 8 | 0.71 | 14 | ||
低产高稳区 | 0.69 | 14 | 0.41 | 8 | 1.63 | 33 | ||
低产低稳区 | 1.11 | 22 | 2.91 | 59 | 2.01 | 40 |
[1] |
FAO. FAOSTAT. http://faostat3.fao.org/home/E.2020.
|
[2] |
Wang N, Reidsma P, Pronk A, et al. Can potato add to China's food self-sufficiency?The scope for increasing potato production in China. European Journal of Agronomy, 2018, 101: 20-29. doi: 10.1016/j.eja.2018.07.002
|
[3] |
Li Y, Wang J, Tang J Z, et al. Analysis of production characteristics, restrictive factors, and strategies for main potato production areas in China. Chinese Potato Journal, 2020, 34(6): 374-382. doi: 10.3969/j.issn.1672-3635.2020.06.007
|
[4] |
Tang J Z, Wang J, Fang Q X, et al. Optimizing planting date and supplemental irrigation for potato across the agro-pastoral ecotone in North China. European Journal of Agronomy, 2018, 98: 82-94. doi: 10.1016/j.eja.2018.05.008
|
[5] |
Jansky S H, Jin L P, Xie K Y, et al. Potato production and breeding in China. Potato Research, 2009, 52(1): 57-65. doi: 10.1007/s11540-008-9121-2
|
[6] |
Teng Z F, Zhang C, Wang J Z. Study on China's potato cultivation divisions. Scientia Agricultura Sinica, 1989, 22(2): 35-44. doi: 10.3321/j.issn:0578-1752.1989.02.005
|
[7] |
Sui Q J, Li X P, Yang W L. Situation analysis of potatoes production in China. Southwest China Journal of Agricultural Sciences, 2008, 21(4): 1182-1188. doi: 10.3969/j.issn.1001-4829.2008.04.067
|
[8] |
Wang Y D, Liu X L, Ren G X, et al. Analysis of the spatiotemporal variability of droughts and the effects of drought on potato production in northern China. Agricultural and Forest Meteorology, 2019, 264: 334-342. doi: 10.1016/j.agrformet.2018.10.019
|
[9] |
He Y, Dong W J, Yan X Y. Characteristics of vegetation growth in the farming-pastoral zone over the North parts of China based on MODIS data. Journal of Applied Meteorological Science, 2008, 19(6): 716-721. doi: 10.3969/j.issn.1001-7313.2008.06.011
|
[10] |
Sun W T, Miao C S, Shen J G, et al. Potato agricultural climate and harvest risk demarcation using GIS technique. Journal of Nanjing Institute of Meteorology, 2004, 27(5): 650-659. doi: 10.3969/j.issn.1674-7097.2004.05.009
|
[11] |
Wang L X, Zhu Y Y, Li J P, et al. Climatic division and risk evaluation for potato planting in Ningxia. Chinese Journal of Agrometeorology, 2011, 32(1): 100-105. doi: 10.3969/j.issn.1000-6362.2011.01.018
|
[12] |
Xu L L, Mao L X, Ma Y L. Climatic regionalization for potato planting in Shanxi Province based on fine gridding. Agricultural Research in the Arid Areas, 2018, 36(5): 251-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201805036.htm
|
[13] |
Qu Z J, Zhou G S, Wei Q P. Meteorological disaster index and risk assessment of frost injury during apple florescence. Journal of Applied Meteorological Science, 2016, 27(4): 385-395. doi: 10.11898/1001-7313.20160401
|
[14] |
Zhang L, Huo Z G, Huang D P, et al. Assessment and distribution of waterlogging damage risks for melons and vegetables in Hainan province from October to November. Journal of Applied Meteorological Science, 2015, 26(4): 432-441. doi: 10.11898/1001-7313.20150405
|
[15] |
Sun J S, Zhou G S, Sui X H. Climatic suitability of the distribution of the winter wheat cultivation zone in China. European Journal of Agronomy, 2012, 43: 77-86. doi: 10.1016/j.eja.2012.05.009
|
[16] |
Wang Y L, Hou X, Miao B L, et al. Drought risk regionalization of potatoes in Inner Mongolia. Journal of Applied Meteorological Science, 2017, 28(4): 504-512. doi: 10.11898/1001-7313.20170411
|
[17] |
Cheng J X, Duan C C, Yan S J. Climate suitability regionalization of Pecan based on MaxEnt model. Journal of Applied Meteorological Science, 2020, 31(5): 631-640. doi: 10.11898/1001-7313.20200510
|
[18] |
He Y, Li Z, Liao X P. Climatic zoning of Brazilian upland rice (IAPAR-9) planting based upon GIS. Journal of Applied Meteorological Science, 2007, 18(2): 219-224. doi: 10.3969/j.issn.1001-7313.2007.02.012
|
[19] |
Li Y, Zhao G Q, Chen H L, et al. WOFOST model parameter calibration based on agro-climatic division of winter wheat. Journal of Applied Meteorological Science, 2021, 32(1): 38-51. doi: 10.11898/1001-7313.20210104
|
[20] |
Yu Z W. Crop Cultivation Science: North. Beijing: China Agriculture Press, 2003: 11-14.
|
[21] |
Zhao J, Yang X G. Spatial patterns of yield-based cropping suitability and its driving factors in the three main maize-growing regions in China. International Journal of Biometeorology, 2019, 63: 1659-1668. doi: 10.1007/s00484-019-01783-1
|
[22] |
McCown R L, Hammer G L, Hargreaves J N G, et al. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems, 1996, 50: 255-271. doi: 10.1016/0308-521X(94)00055-V
|
[23] |
Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 2003, 18: 267-288. doi: 10.1016/S1161-0301(02)00108-9
|
[24] |
Li Y, Wang J, Tang J Z, et al. Coupling impacts of planting date and cultivar on potato yield. Chinese Journal of Eco-Agriculture, 2019, 27(2): 296-304. DOI: 10.13930/j.cnki.cjea.180707.
|
[25] |
Gong G F, Jian W M. On the geographical distribution of phenodate in China. Acta Geographica Sinica, 1983, 50(1): 33-40. doi: 10.3321/j.issn:0375-5444.1983.01.004
|
[26] |
Cheng X, Sun S, Zhang F L, et al. Spatial and temporal distributions of apple drought in Northern China. Journal of Applied Meteorological Science, 2020, 31(1): 63-73. doi: 10.11898/1001-7313.20200106
|
[27] |
Zhao J, Yang X G. Distribution of high-yield and high-yield stability zones for maize yield potential in the main growing regions in China. Agriculutral and Forest Meteorology, 2018, 248: 511-517. doi: 10.1016/j.agrformet.2017.10.016
|
[28] |
Liu J, Jiang J Y. Multi-scale data sensitivity study on cloud analysis of strong typhoon. Journal of Applied Meteorological Science, 2014, 25(1): 1-10. http://qikan.camscma.cn/article/id/20140101
|
[29] |
Shi N. Multi-analysis in Meteorology Research and Prediction. Beijing: China Meteorological Press, 1995: 174-176.
|
[30] |
Leng G Y. Recent changes in county-level corn yield variability in the United States from observations and crop models. Science of the Total Environment, 2017, 607/608: 683-690. doi: 10.1016/j.scitotenv.2017.07.017
|
[31] |
Tang J Z, Wang J, Wang E L, et al. Identifying key meteorological factors to yield variation of potato and the optimal planting date in the agro-pastoral ecotone in North China. Agricultural and Forest Meteorology, 2018(256/257): 283-291. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b8f0ada2600d7778c7c76679d5bab0da
|
[32] |
Wang F X, Feng S Y, Hou X Y, et al. Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Research, 2009, 110: 123-129. doi: 10.1016/j.fcr.2008.07.014
|
[33] |
Hou X Y, Wang F X, Han J J, et al. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agricultural and Forest Meteorology, 2010, 150: 115-121. doi: 10.1016/j.agrformet.2009.09.007
|
[34] |
Hou X Q, Li R. Effects of mulching with no-tillage on soil physical properties and potato yield in mountain area of southern Ningxia. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201519016.htm
|
[35] |
Sun S, Yang X G, Zhao J, et al. The possible effects of global warming on cropping systems in China XI. The variation of potential light-temperature suitable cultivation zone of winter wheat in China under climate change. Scientia Agricultura Sinica, 2015, 48(10): 1926-1941. doi: 10.3864/j.issn.0578-1752.2015.10.006
|
[36] |
Editorial Department of Agricultural Engineering and Technology. The layout planning of dominant potato growing area in China from 2008 to 2015. Agricultural Engineering Technology, 2009(11): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGN200911003.htm
|