Zheng Yanjiao, Yang Zaiqiang, Wang Lin, et al. Refined risk zoning of high temperature and heat damage to greenhouse tomato in southern China. J Appl Meteor Sci, 2021, 32(4): 432-442. DOI:  10.11898/1001-7313.20210405.
Citation: Zheng Yanjiao, Yang Zaiqiang, Wang Lin, et al. Refined risk zoning of high temperature and heat damage to greenhouse tomato in southern China. J Appl Meteor Sci, 2021, 32(4): 432-442. DOI:  10.11898/1001-7313.20210405.

Refined Risk Zoning of High Temperature and Heat Damage to Greenhouse Tomato in Southern China

DOI: 10.11898/1001-7313.20210405
  • Received Date: 2021-03-25
  • Rev Recd Date: 2021-06-10
  • Publish Date: 2021-07-31
  • With the intensification of global warming, high temperature and heat damage of spring-summer occurs frequently in recent years, which seriously affects the growth of greenhouse tomato and reduces agricultural economic efficiency. The high temperature and heat damage risk zoning of tomato is especially important, but the research is not sufficient. Based on meteorological data of 359 stations from 1990 to 2019 and greenhouse microclimate measured data, the highest daily temperature in the southern greenhouse is simulated by the BP neural network. Combining high temperature control test data using correlation analysis and principal component analysis methods, the main indicators are screened out, and a high temperature stress index model is constructed. The mean-standard deviation method is used to divide three levels of high temperature stress, and then the temperature with duration corresponding to the critical value of different levels of high temperature stress index are determined respectively, and the risk index system is established. Using geographic information system (GIS) software and other mathematical statistical methods, the characteristics of the year-over-year changes in the frequency of high temperature and thermal damage of tomatoes in the research area are analyzed, and a comprehensive risk index is established to assess the trend of risk development of high temperature and heat damage to greenhouse tomato in the past 30 years. The results show that the frequency of mild and severe high temperature and heat damage is increasing from 1990 to 2019, while the frequency of moderate high temperature and heat damage shows a different pattern (insignificant decrease trend). Among them, the frequency of mild high temperature and heat damage is the highest, followed by moderate high temperature and heat damage. The frequency of heat damage of various grades varies greatly from year to year. There are obvious differences in the distribution of the risk of high temperature and heat damage in space. High-risk areas of heat damage in southern greenhouse tomato are mainly distributed in the western and eastern parts of Guangdong, the eastern and western parts of Guangxi, and the northern, central, and southern parts of Yunnan. The second high-risk areas are mainly distributed in southern Hunan, most areas of Guangxi, central and northern Guangdong, southern Jiangxi, and most areas of Fujian. Areas with moderate heat damage are mainly distributed in north-central Hunan, northwestern Jiangxi, Zhejiang, Anhui, Hubei, and Chongqing. And the risk in western region is low.
  • Fig. 1  Distribution of target area and meteorological stations

    Fig. 2  Training and measured daily maximum temperature

    Fig. 3  Correlation coefficients of various indicators of greenhouse tomato after high temperature treatments

    Fig. 4  Frequency of different grades of high temperature and heat damage for greenhouse tomato

    Fig. 5  The risk index of high temperature and heat damage for greenhouse tomato

    Table  1  Sources of microclimate data

    地点 采集时段 样本量
    江苏省宿迁市 2008-03-19—09-23 191
    上海市 2009-03-21—09-30,2010-03-01—09-30,2011-03-01—04-02 474
    浙江省慈溪市 2007-03-21—05-09,2008-03-01—06-24,07-01—30,2009-04-26—05-25 224
    浙江省温州市 2010-03-01—06-10 103
    福建省福清市 2017-05-01—09-30,2018-03-01—09-30 368
    福建省连城县 2017-06-08—29,2017-07-06—09-30,2018-03-01—09-22,2019-03-01—03-31,2019-04-23—09-03 449
    DownLoad: Download CSV

    Table  2  The first 5 eigenvectors of principal component analysis of each index after high temperature treatments

    参数 特征向量
    第1主成分 第2主成分 第3主成分 第4主成分 第5主成分
    Pn 0.066 0.092 0.006 -0.159 -0.033
    Slp 0.065 0.065 -0.037 -0.133 -0.112
    Clp -0.065 0.038 -0.011 0.029 0.152
    Pmax 0.066 0.069 0.035 -0.178 0.111
    Eaq 0.054 0.090 -0.091 -0.237 0.153
    Gs 0.056 0.083 -0.186 -0.173 0.116
    Ci -0.056 0.101 0.101 -0.253 0.118
    Ls 0.056 -0.101 -0.101 0.252 -0.119
    Tr 0.044 0.135 -0.256 0.074 -0.166
    Ewu 0.010 -0.126 0.384 -0.117 0.184
    φ 0.050 -0.145 0.018 0.097 -0.010
    Pit 0.067 -0.001 0.145 -0.003 -0.115
    Ff 0.067 -0.074 0.032 -0.096 0.015
    Pia 0.062 -0.095 0.086 0.139 0.207
    Ac 0.023 0.157 0.175 -0.140 -0.447
    Tc 0.056 0.084 0.005 -0.027 0.502
    Dc -0.043 0.166 -0.042 0.265 0.105
    Ec 0.058 0.083 -0.057 0.085 0.343
    Cha 0.061 -0.112 0.025 -0.145 -0.023
    Chb 0.055 -0.045 -0.054 0.391 0.183
    Sod 0.045 0.126 0.203 0.247 -0.161
    Pod -0.030 0.153 0.235 0.073 0.289
    Cat 0.042 0.135 0.164 0.358 -0.161
    Mda -0.069 0.002 -0.065 0.112 0.120
    DownLoad: Download CSV

    Table  3  IHS under different treatments

    处理日数/d 高温胁迫
    T38℃ T41℃ T44℃
    3 0.157 0.17 0.199
    6 0.201 0.251 0.317
    9 0.285 0.351 0.468
    12 0.316 0.431 0.621
    DownLoad: Download CSV

    Table  4  Classification of high temperature and heat damage of greenhouse tomato

    热害等级 日最高气温(T)/℃ 持续时间(D)/d
    轻度 36 < T≤38 3 < D≤6
    T>38 2≤D≤3
    中度 36 < T≤38 6 < D≤12
    38 < T≤41 3 < D≤9
    T>41 3 < D≤6
    重度 36 < T≤38 D>12
    38 < T≤41 D>9
    T>41 D>6
    DownLoad: Download CSV
  • [1]
    Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. Plant Journal, 2019, 97(1): 73-90. doi:  10.1111/tpj.14152
    [2]
    Chittaranjan K. Genomic Designing of Climate-smart Vegetable Crops. Switzerland: Springer International Publishing, 2020.
    [3]
    Wang X, Jia Y, Peng S, et al. Root growth, fruit yield and water use efficiency of greenhouse grown tomato under different irrigation regimes and nitrogen levels. J Plant Growth Regul, 2018, 38: 400-415. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMTE1EiBhMTRmMDBlMTg4OGMwYjNmNDQ3N2Q3NGY0NmU2N2Y1NxoINmI5cWo4bWk%3D
    [4]
    Li T L. The status and trend of facility vegetable technology and industry development in China. Chin Rural Sci Tech, 2016(5): 75-77. doi:  10.3969/j.issn.1005-9768.2016.05.024
    [5]
    Ding Y H, Li X, Li Q P. Advances of surface wind speed change over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101
    [6]
    Dong X Y, Wu B Y. Dynamic linkages between heat wave events in Jianghuai region and arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi:  10.11898/1001-7313.20190404
    [7]
    Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304
    [8]
    An X Y. Research on the Impact of Meteorological Disasters on Agricultural Production. Harbin: Northeast Agricultural University, 2018.
    [9]
    Shamshiri R R, Kalantari F, Ting K C, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int J Agric Biol Eng, 2018, 11(1): 1-22.
    [10]
    Yang S Q, Yang Z Q, Cai X, et al. Simulation of light response of photosynthesis for greenhouse tomato leaves under high temperature and high humidity stress. Chin J Ecol, 2018, 37(7): 2003-2012. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201807012.htm
    [11]
    Bao E C. Research on Heat Transfer Characteristics of Active Heat Storage Cycle System in Prefabricated Solar Greenhouse. Yangling: Northwest A&F University, 2018.
    [12]
    Zheng Y J, Yang Z Q, Xu C, et al. The interactive effects of daytime high temperature and humidity on growth and endogenous hormone concentration of tomato seedlings. Hort Science, 2020, 55(10): 1575-1583. http://www.researchgate.net/publication/347766206_The_Interactive_Effects_of_Daytime_High_Temperature_and_Humidity_on_Growth_and_Endogenous_Hormone_Concentration_of_Tomato_Seedlings
    [13]
    Yan C Y, Zhang M L, Huang J, et al. Environmental control technology of southern multi-span plastic greenhouse. Agri Eng Tech, 2018, 38(4): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-NSGJ201804008.htm
    [14]
    Li Z M, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot, 2012, 63(3): 1155-1166. doi:  10.1093/jxb/err329
    [15]
    Huang Q Q, Yang Z Q, Liu X N, et al. Discussion on the mechanism of effects of high temperature and humidity on tomato flower bud differentiation in seedling stage. Chin J Agrom, 2021, 42(1): 56-68.
    [16]
    Wei T T, Yang Z Q, Wang M T, et al. Effects of high temperature and different air humidity on water physiology of flowering tomato seedlings. Chin J Agrom, 2019, 40(5): 317-326. doi:  10.3969/j.issn.1000-6362.2019.05.006
    [17]
    Zhao Y J, Xu S J, Wang Z, et al. Effects of high temperature stress on the growth and physiological indexes of three tomato varieties. Jiangsu Agric Sci, 2019, 47(17): 147-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201917035.htm
    [18]
    Wei T T. Effects of Elevated Air Humidity at High Temperature on Organic Acid Metabolism and Intrinsic Quality of Facility Tomato Fruits. Nanjing: Nanjing University of Information Science & Technology, 2020.
    [19]
    Zhao H L. Effects of High Temperature and High Humidity on Tomato Fruit Growth, Sugar and Nitrogen Metabolism in Greenhouse. Nanjing: Nanjing University of Information Science & Technology, 2020.
    [20]
    Yu S L, Wang J, Yang X G, et al. Climatic regionalization of suitable planting of processing tomato in Xinjiang. Chin J Agrom, 2005, 26(4): 268-271. doi:  10.3969/j.issn.1000-6362.2005.04.016
    [21]
    Ji F. Analysis of fine climatic regionalization of tomato processing in Shihezi reclamation area. Xinjiang Farm Res Sci Tech, 2016, 39(10): 61-63. doi:  10.3969/j.issn.1001-361X.2016.10.030
    [22]
    Zhang B, Hu J M, Gu X P, et al. Precise comprehensive agricultural climate division for tomato in Guizhou province based on climatic suitability models. North Hort, 2018(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201802039.htm
    [23]
    Wang S M, Zhang W H, Zeng K, et al. Study on meteorological indexes of spring low temperature injury to early rice. Acta Agri Jiangxi, 2012, 24(6): 176-178. doi:  10.3969/j.issn.1001-8581.2012.06.052
    [24]
    Peng X D, Yang Z Q, Liu D, et al. Study of low-temperature disaster index of greenhouse cucumbers. Meteor Sci Tech, 2013, 41(2): 394-400. doi:  10.3969/j.issn.1671-6345.2013.02.034
    [25]
    Xiao F. Effects of High-temtperature Stress on Physiological and Gene Expression Characteristics of Grapevine (vitis vinifera L. Hongti) during Seedling Stage. Nanjing: Nanjing University of Information Science & Technology, 2018.
    [26]
    Wei T T, Yang Z Q, Wang L, et al. Simulation model of hourly air temperature inside glass greenhouse and plastic greenhouse. Chin J Agrom, 2018, 39(10): 644-655. doi:  10.3969/j.issn.1000-6362.2018.10.003
    [27]
    Yang S Q, Yang Z Q, Wang L, et al. Effect of high humidity and high temperature interaction on photosynthetic characteristics of greenhouse tomato crops. Chin J Ecol, 2018, 37(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201801011.htm
    [28]
    Liu F, Chen S Y, Li C, et al. Evaluation of heat resources and crop collocation standard of solar greenhouse in Tianjin. North Hort, 2018, 48(9): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201809019.htm
    [29]
    Guo L M, Chang J, Xu H L, et al. Simulation and prediction of permafrost active layer temperature based on BP neural network and FEFLOW model: Take the Fenghuoshan area on the Tibetan Plateau as an example. J Glaciol Geocryol, 2020, 42(2): 399-411. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202002010.htm
    [30]
    Gao L N, Sun Q, Guo C R, et al. Forecast model of daily extreme temperature in solar greenhouse in Shanxi Province. Chin Agric Sci Bull, 2015, 31(15): 240-246. doi:  10.11924/j.issn.1000-6850.casb14120160
    [31]
    Wang C L, Wei R J, Shen S H, et al. Microclimate simulation of sunlight greenhouse in winter based on BP neural network. Chin Agric Sci Bull, 2014, 30(5): 149-157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201405027.htm
    [32]
    Wang L, Yang Z Q, Wang M T, et al. Effect of air humidity on nutrient content and dry matter distribution of tomato seedlings under high temperature. Chin J Agrom, 2018, 39(5): 304-313. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201805002.htm
    [33]
    Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi:  10.11898/1001-7313.20210203
    [34]
    Yang J Y, Huo Z H, Wang P J, et al. Evaluation index construction and hazard risk assessment on apple drought in northern China. J Appl Meteor Sci, 2021, 32(1): 25-37. doi:  10.11898/1001-7313.20210103
    [35]
    Cheng X, Sun S, Zhang Z T, et al. Spatial-temporal distribution of apples with different drought level in northern China. J Appl Meteor Sci, 2020, 31(4): 405-416. doi:  10.11898/1001-7313.20200403
    [36]
    Liu J P. Interdecadal Variabilities and Mechanisms of Southern China Summer Rainfall. Beijing: Chinese Academy of Meteorological Sciences, 2018.
    [37]
    Chen L J, Zhao J H, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401
    [38]
    Liu B Q, Zhu C W. Potential skill map of predictors applied to the seasonal forecast of summer. J Appl Meteor Sci, 2020, 31(5): 570-582. doi:  10.11898/1001-7313.20200505
    [39]
    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi:  10.11898/1001-7313.20200111
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (1311) PDF downloads(93) Cited by()
    • Received : 2021-03-25
    • Accepted : 2021-06-10
    • Published : 2021-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint