[1]
|
Rothan C, Diouf I, Causse M. Trait discovery and editing in tomato. Plant Journal, 2019, 97(1): 73-90. doi: 10.1111/tpj.14152
|
[2]
|
Chittaranjan K. Genomic Designing of Climate-smart Vegetable Crops. Switzerland: Springer International Publishing, 2020.
|
[3]
|
|
[4]
|
|
[5]
|
Ding Y H, Li X, Li Q P. Advances of surface wind speed change over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi: 10.11898/1001-7313.20200101
|
[6]
|
Dong X Y, Wu B Y. Dynamic linkages between heat wave events in Jianghuai region and arctic summer cold anomaly. J Appl Meteor Sci, 2019, 30(4): 431-442. doi: 10.11898/1001-7313.20190404
|
[7]
|
Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi: 10.11898/1001-7313.20210304
|
[8]
|
An X Y. Research on the Impact of Meteorological Disasters on Agricultural Production. Harbin: Northeast Agricultural University, 2018.
|
[9]
|
Shamshiri R R, Kalantari F, Ting K C, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int J Agric Biol Eng, 2018, 11(1): 1-22.
|
[10]
|
|
[11]
|
Bao E C. Research on Heat Transfer Characteristics of Active Heat Storage Cycle System in Prefabricated Solar Greenhouse. Yangling: Northwest A&F University, 2018.
|
[12]
|
|
[13]
|
|
[14]
|
Li Z M, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. J Exp Bot, 2012, 63(3): 1155-1166. doi: 10.1093/jxb/err329
|
[15]
|
Huang Q Q, Yang Z Q, Liu X N, et al. Discussion on the mechanism of effects of high temperature and humidity on tomato flower bud differentiation in seedling stage. Chin J Agrom, 2021, 42(1): 56-68.
|
[16]
|
Wei T T, Yang Z Q, Wang M T, et al. Effects of high temperature and different air humidity on water physiology of flowering tomato seedlings. Chin J Agrom, 2019, 40(5): 317-326. doi: 10.3969/j.issn.1000-6362.2019.05.006
|
[17]
|
|
[18]
|
Wei T T. Effects of Elevated Air Humidity at High Temperature on Organic Acid Metabolism and Intrinsic Quality of Facility Tomato Fruits. Nanjing: Nanjing University of Information Science & Technology, 2020.
|
[19]
|
Zhao H L. Effects of High Temperature and High Humidity on Tomato Fruit Growth, Sugar and Nitrogen Metabolism in Greenhouse. Nanjing: Nanjing University of Information Science & Technology, 2020.
|
[20]
|
Yu S L, Wang J, Yang X G, et al. Climatic regionalization of suitable planting of processing tomato in Xinjiang. Chin J Agrom, 2005, 26(4): 268-271. doi: 10.3969/j.issn.1000-6362.2005.04.016
|
[21]
|
Ji F. Analysis of fine climatic regionalization of tomato processing in Shihezi reclamation area. Xinjiang Farm Res Sci Tech, 2016, 39(10): 61-63. doi: 10.3969/j.issn.1001-361X.2016.10.030
|
[22]
|
|
[23]
|
Wang S M, Zhang W H, Zeng K, et al. Study on meteorological indexes of spring low temperature injury to early rice. Acta Agri Jiangxi, 2012, 24(6): 176-178. doi: 10.3969/j.issn.1001-8581.2012.06.052
|
[24]
|
|
[25]
|
Xiao F. Effects of High-temtperature Stress on Physiological and Gene Expression Characteristics of Grapevine (vitis vinifera L. Hongti) during Seedling Stage. Nanjing: Nanjing University of Information Science & Technology, 2018.
|
[26]
|
Wei T T, Yang Z Q, Wang L, et al. Simulation model of hourly air temperature inside glass greenhouse and plastic greenhouse. Chin J Agrom, 2018, 39(10): 644-655. doi: 10.3969/j.issn.1000-6362.2018.10.003
|
[27]
|
|
[28]
|
|
[29]
|
Guo L M, Chang J, Xu H L, et al. Simulation and prediction of permafrost active layer temperature based on BP neural network and FEFLOW model: Take the Fenghuoshan area on the Tibetan Plateau as an example. J Glaciol Geocryol, 2020, 42(2): 399-411. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202002010.htm
|
[30]
|
Gao L N, Sun Q, Guo C R, et al. Forecast model of daily extreme temperature in solar greenhouse in Shanxi Province. Chin Agric Sci Bull, 2015, 31(15): 240-246. doi: 10.11924/j.issn.1000-6850.casb14120160
|
[31]
|
|
[32]
|
|
[33]
|
Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi: 10.11898/1001-7313.20210203
|
[34]
|
Yang J Y, Huo Z H, Wang P J, et al. Evaluation index construction and hazard risk assessment on apple drought in northern China. J Appl Meteor Sci, 2021, 32(1): 25-37. doi: 10.11898/1001-7313.20210103
|
[35]
|
Cheng X, Sun S, Zhang Z T, et al. Spatial-temporal distribution of apples with different drought level in northern China. J Appl Meteor Sci, 2020, 31(4): 405-416. doi: 10.11898/1001-7313.20200403
|
[36]
|
Liu J P. Interdecadal Variabilities and Mechanisms of Southern China Summer Rainfall. Beijing: Chinese Academy of Meteorological Sciences, 2018.
|
[37]
|
Chen L J, Zhao J H, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi: 10.11898/1001-7313.20190401
|
[38]
|
Liu B Q, Zhu C W. Potential skill map of predictors applied to the seasonal forecast of summer. J Appl Meteor Sci, 2020, 31(5): 570-582. doi: 10.11898/1001-7313.20200505
|
[39]
|
Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015-2017. J Appl Meteor Sci, 2020, 31(1): 117-128. doi: 10.11898/1001-7313.20200111
|