Ma Qingrong, Zuo Xuan, Hu Chengda, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. DOI:  10.11898/1001-7313.20210409.
Citation: Ma Qingrong, Zuo Xuan, Hu Chengda, et al. Effects of waterlogging on photosynthetic characteristics and yield of summer peanut. J Appl Meteor Sci, 2021, 32(4): 479-490. DOI:  10.11898/1001-7313.20210409.

Effects of Waterlogging on Photosynthetic Characteristics and Yield of Summer Peanut

DOI: 10.11898/1001-7313.20210409
  • Received Date: 2021-03-25
  • Rev Recd Date: 2021-06-03
  • Publish Date: 2021-07-31
  • Yield of summer peanut is often reduced due to waterlogging caused by excessive rainfall in flood season. Exploring the effects of waterlogging duration under different cultivation pattern on photosynthetic characteristics and yield of peanut can provide scientific and technological support for dynamic monitoring, evaluation of waterlogging process, disaster prevention and mitigation. Field experiment is carried out in main peanut production area with clay soil. Peanut variety Yuhua 22 is used in field experiment under flat and ridge cultivation patterns. The yield formation process of peanut is divided into three stages: Early, middle and late, and four irrigation treatments (3 days, 5 days, 7 days and 9 days) are designed in these stages. In flat pattern, the depth of water in field is no less than 2 cm during irrigation, and the daily irrigation amount of ridged plots is consistent with that of flat plots. The results show that under the same irrigation amount, the waterlogging lasting days of ridge pattern are reduced by 1 to 5 days, and the flooding days are reduced by 3 to 5 days. The waterlogging duration is 4 to 5 days in 3 days irrigation treatment. Chlorophyll content and net photosynthetic rate show positive effects, resulting in the increase of dry matter accumulation in stems and leaves. The effects of waterlogging in all stages increase with waterlogging duration, but it has little effect in late stage because of the slow growth of peanut itself. For the 100-seed weight, the effects of heavy waterlogging are most significant in the middle period, followed by the early period, and then the late period. While for other factors, the effects are most significant in the early period. The waterlogging duration in all treatments is between 4 days and 16 days. The effects range from 1.3% to 64.2% on photosynthetic parameters and from 0.9% to -44.9% on biomass and yield. Compared with flat pattern, ridge pattern has less effects due to the decrease of waterlogging duration. The peanut yield loss of each treatment ranges from 3.4% to 11.6% in early stage, and from 1.2% to 6.9% in middle stage. The experiments take possible waterlogging lasting days in peanut production and two different cultivation patterns (flat and ridge) into consideration reasonably. The results are of great significance to enhance the capacity of disaster prevention and mitigation in peanut production.
  • Fig. 1  Biomass of peanut under waterlogging treatments during each stage for different cultivation pattern

    Fig. 2  Effects of different cultivation pattern on yield of peanut under waterlogging treatments during each stage

    Table  1  Number of station-time and frequency of continuous precipitation days at 118 stations from 1971 to 2020

    连续降水日数/d 发生总次数 发生频次/(次·(站·年)-1) 发生站次/(站·(次·年)-1)
    3 6063 1.03 121
    4 3455 0.59 69
    5 2095 0.36 42
    6 1196 0.20 24
    7 696 0.12 14
    8 431 0.07 9
    9 332 0.06 7
    10 171 0.03 3
    11 89 0.02 2
    12 69 0.01 1
    13 26 0 1
    14 14 0 0
    15 18 0 0
    16 5 0 0
    17 4 0 0
    18 3 0 0
    20 1 0 0
    31 1 0 0
    DownLoad: Download CSV

    Table  2  Waterlogging duration under two cultivation patterns with the flooding irrigation amount under flat pattern

    耕作方式 灌水日数/d 淹涝持续日数/d 湿渍持续日数/d 涝渍持续日数/d
    平作 3 4 1 5
    5 7 2 9
    7 9 3 12
    9 12 4 16
    垄作 3 1 3 4
    5 3 4 7
    7 5 4 9
    9 7 4 11
    DownLoad: Download CSV

    Table  3  Comparison in chlorophyll content between different waterlogging treatments and CK

    耕作方式 涝渍处理 叶绿素含量 与对照相比影响百分率/%
    平作 A3 47.2 -4.2
    A5 42.9 5.6
    A7 37.1 15.2
    A9 29.4 30.7
    B3 42.1 -1.1
    B5 39.6 3.5
    B7 35.8 10.0
    B9 31.9 20.6
    C3 36.1 -0.3
    C5 35.0 1.1
    C7 32.5 4.1
    C9 31.4 8.0
    垄作 A3 48.9 -8.7
    A5 44.9 -2.2
    A7 42.3 4.9
    A9 34.8 17.3
    B3 40.7 -4.4
    B5 39.3 -0.1
    B7 35.3 6.3
    B9 33.0 10.6
    DownLoad: Download CSV

    Table  4  Comparison in photosynthetic parameters between different waterlogging treatments and CK

    耕作方式 涝渍处理 光合参数/(μmol·m-2·s-1) 与对照相比影响百分率/%
    净光合速率 胞间CO2浓度 蒸腾速率 净光合速率 胞间CO2浓度 蒸腾速率
    平作 A3 25.0 281 6.8 -3.9 3.1 1.3
    A5 24.6 243 6.2 5.6 17.9 9.5
    A7 20.2 209 5.2 15.2 26.4 23.6
    A9 17.6 16 4.8 30.7 43.1 29.0
    B3 21.5 263 6.0 3.6 6.1 4.8
    B5 23.4 183 5.8 3.5 30.9 9.2
    B7 23.1 165 4.8 10.0 39.8 19.8
    B9 18.6 105 4.2 20.6 64.2 28.0
    C3 21.6 235 5.2 -0.3 12.0 12.3
    C5 22.4 230 5.0 1.1 19.3 11.6
    C7 16.0 182 4.3 26.5 33.3 24.8
    C9 18.1 158 3.8 8.0 37.8 32.6
    垄作 A3 25.6 279 6.9 -4.7 1.8 -0.4
    A5 26.0 265 6.3 1.2 9.6 8.4
    A7 22.0 231 5.9 11.9 18.9 12.7
    A9 18.2 185 5.4 21.8 31.5 19.1
    B3 22.0 263 6.2 -1.6 4.0 3.3
    B5 23.1 235 6.0 3.1 19.8 6.4
    B7 21.0 196 4.7 6.3 31.2 22.8
    B9 20.7 265 4.1 10.6 29.4 31.5
    DownLoad: Download CSV

    Table  5  Effects of waterlogging treatments on yield and yield components in different stages

    耕作方式 涝渍处理 百果重/g 百仁重/g 饱果率/% 荚果产量/(kg·hm-2)
    平作 CK 182.4±4.1 80.6±8.0 78.0±6.1 5689.7±465.2
    A3 175.6±7.5 75.9±4.3 74.2±5.3 5424.4±161.3
    A5 160.8±5.3* 69.4±3.2* 69.5±4.1* 5032.3±137.2*
    A7 141.5±3.6** 59.1±6.1** 62.1±6.2** 4556.0±301.2**
    A9 132.8±9.2** 57.3±9.8** 58.6±2.8** 4075.2±423.3**
    B3 180.6±3.1 76.5±0.9* 75.6±6.1 5502.8±305.5
    B5 173.1±2.2* 68.5±4.4* 72.3±8.9* 5343.3±184.5
    B7 161.0±4.5* 57.2±1.1** 68.9±4.2* 5028.0±271.3*
    B9 149.8±3.1** 54.9±3.7** 63.1±5.6** 4590.4±423.4**
    C3 183.2±4.8 80.8±1.1 76.8±3.1 5567.2±401.0
    C5 177.8±1.4 78.1±2.1 74.7±2.2 5408.5±127.1
    C7 172.9±0.5* 75.5±4.6* 72.5±2.3* 5355.2±278.4*
    C9 163.6±9.8** 71.9±4.9** 70.1±4.5* 5283.2±366.9*
    垄作 CK 183.6±9.2 81.3±5.1 78.8±2.9 5763.0±334.7
    A3 186.4±8.4 82.3±4.8 76.2±5.8 5744.7±421.6
    A5 175.1±11.5 76.1±6.2* 73.5±6.1* 5346.4±206.8*
    A7 161.6±15.3* 70.0±2.8** 71.3±2.8** 5063.4±89.8**
    A9 151.3±7.3** 65.7±5.2** 69.1±3.6** 4797.6±341.7**
    B3 184.1±5.5 82.0±3.9 77.0±4.2 5643.3±298.3
    B5 180.1±13.9 78.8±4.9* 74.5±4.7 5482.9±174.3*
    B7 174.6±11.2* 75.0±6.3* 72.8±6.7* 5264.7±201.1**
    B9 165.3±7.7** 70.8±5.3** 70.7±5.4** 5046.6±398.6**
        注:*和* *分别表示与对照处理CK相比达到0.05和0.01显著性水平。
    DownLoad: Download CSV
  • [1]
    Fukao T, Barrera-Figueroa B E, Juntawong P, et al. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Front Plant Sci, 2019, 10, 340. DOI: 10.3389/fpls.2019.00340.
    [2]
    Chen L J, Zhao J H, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401
    [3]
    Ploschuk R A, Miralles D J, Colmer T D, et al. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Front Plant Sci, 2018, 9: 1863. doi:  10.3389/fpls.2018.01863
    [4]
    Huo Z G, Fan Y X, Yang J Y, et al. Review on agricultural flood disaster in China. J Appl Meteor Sci, 2017, 28(6): 641-653. doi:  10.11898/1001-7313.20170601
    [5]
    Ma Q R, Zou C H, Hu C D, et al. The influence of waterlogging stress on yield and quality at different pod stage of peanut. Hubei Agricultural Sciences, 2020, 59(9): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY202009008.htm
    [6]
    Arduini I, Baldanzi M, Pampana S. Reduced growth and nitrogen uptake during waterlogging at tillering permanently affect yield components in late sown oats. Front Plant Sci, 2019, 10: 1087. doi:  10.3389/fpls.2019.01087
    [7]
    Tian J, Huo Z G, Liu D, et al. Spatial-temporal variation and zoning of rain-washing damage to early rice pollen in Jiangxi Province. J Appl Meteor Sci, 2019, 30(5): 608-618. doi:  10.11898/1001-7313.20190509
    [8]
    Zhang Y, Song X, Yang G, et al. Physiological and molecular adjustment of cotton to waterlogging at peak-flowering in relation to growth and yield. Field Crops Res, 2015, 179: 164-172. doi:  10.1016/j.fcr.2015.05.001
    [9]
    Ahmed S, Nawata E, Hosokawa M, et al. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci, 2002, 163: 117-123. doi:  10.1016/S0168-9452(02)00080-8
    [10]
    Ahmed S, Nawata E, Sakuratani T. Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean(Vigna radiata (L. ) Wilczak cv. KPS1) during waterlogging. Environ Exp Bot, 2006, 57: 278-284. doi:  10.1016/j.envexpbot.2005.06.006
    [11]
    Xiang Y L, Fang Z W, Zhao J W, et al. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat. Journal of Triticeae Crops, 2020, 40(6): 730-736. https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW202006012.htm
    [12]
    de San Celedonio R P, Abeledo L G, Miralles D J. Identifying the critical period for waterlogging on yield and its components in wheat and barley. Plant Soil, 2014, 378: 265-277. doi:  10.1007/s11104-014-2028-6
    [13]
    Wollmer A C, Pitann B, Mühling K H. Waterlogging events during stem elongation or flowering affect yield of oilseed rape (Brassica napus L. ) but not seed quality. J Agron Crop Sci, 2018, 204: 165-174. doi:  10.1111/jac.12244
    [14]
    Yu W D, Feng L P, Sheng S X, et al. Effect of waterlogging at jointing and tasseling stages on growth and yield of summer maize. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 127-136. doi:  10.3969/j.issn.1002-6819.2014.13.016
    [15]
    Deng L N, Liang T, Zhang Z X, et al. Effects of waterlogging on photosynthetic characteristics of maize leaves at seedling stage. Journal of Anhui Science and Technology University, 2015, 29(6): 41-46. doi:  10.3969/j.issn.1673-8772.2015.06.008
    [16]
    Tian L, Li J, Bi W, et al. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize(Zea mays L. ) under field conditions. Agric Water Manag, 2019, 218: 250-258. doi:  10.1016/j.agwat.2019.03.054
    [17]
    Yi J, Liu D W, Wang J G. Effects of waterlogging on dry matter accumulation and distribution in peanut. Journal of Peanut Science, 2017, 46(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN201703007.htm
    [18]
    Zhang F, Wang Y Y, Zhang J L, et al. Effects of water-logging at different growing periods on physiological characteristics, pod yield and kernel quality of Peanut. Journal of Peanut Science, 2012, 41(2): 1-7. doi:  10.3969/j.issn.1002-4093.2012.02.001
    [19]
    Cao T H, Liang X H, Zhang L, et al. Effects of water stress on peanut yield formation process after flowering. Journal of Jilin Agricultural University, 2011, 33(1): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201101003.htm
    [20]
    Liu D W, Li L. The response of alcohol dehydroganase activity & development of peanut roots to waterlogging & their relationships. Journal of Peanut Science, 2007, 36(4): 12-17. doi:  10.3969/j.issn.1002-4093.2007.04.003
    [21]
    Zhao W, Li L, Ge L, et al. Analysis on difference of waterlogging tolerance of different peanut varieties at seedling stage. Guizhou Agricultural Sciences, 2009, 37(12): 84-86. doi:  10.3969/j.issn.1001-3601.2009.12.025
    [22]
    Zhang J, Liu J, Zang X W, et al. Effects of drought stress on yield and growth and development at different growth stages of peanut. Chinese Agricultural Sciene Bulletin, 2015, 31(24): 93-98. doi:  10.11924/j.issn.1000-6850.casb15020067
    [23]
    Zang X W, Tang F S, Zhang J, et al. Effect of waterlogging stress on peanut yield and quality with different planting patterns. Journal of Peanut Science, 2014, 43(4): 13-18. doi:  10.3969/j.issn.1002-4093.2014.04.002
    [24]
    Wang J L. Modern Agrometeorological Service. Beijing: China Meteorological Press, 2010.
    [25]
    Guo J P. Research progress on agricultural meteorological disaster monitoring and forecasting. J Appl Meteor Sci, 2016, 27(5): 620-630. doi:  10.11898/1001-7313.20160510
    [26]
    Yu L H, Zhao Y X. Analysis of drought-flood disaster on Huanghuaihai region during summer maize growing season. Journal of Catastrophology, 2013, 28(2): 71-75. doi:  10.3969/j.issn.1000-811X.2013.02.015
    [27]
    Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat. J Appl Meteor Sci, 2020, 31(3): 267-279. doi:  10.11898/1001-7313.20200302
    [28]
    Zhang F. Difference in Water-logging on Physiological Characters, Pod Yield and Seed Quality of Peanut. Taian: Shandong Agricultural University, 2012.
    [29]
    Zhang Q, Cui S S, Gao B, et al. Effects of sowing date on physiological characteristics and yield of summer-planting peanut. Journal of Peanut Science, 2015, 44(4): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN201504004.htm
    [30]
    Guo J P. Research progress of precipitation interception by plants. J Appl Meteor Sci, 2020, 31(6): 641-652. doi:  10.11898/1001-7313.20200601
    [31]
    Erda L, Wei X, Hui J, et al. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos Trans R Soc B Biol Sci, 2005, 360: 2149-2154. doi:  10.1098/rstb.2005.1743
    [32]
    Zhang L, Lü J M, Ding M H. Impact of Arctic extreme cyclones on cold spells in China during early 2015. J Appl Meteor Sci, 2020, 31(3): 315-327. doi:  10.11898/1001-7313.20200306
    [33]
    Wang Y, Chen Z, Jiang Y, et al. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L. ). Sci Hortic Amst, 2019, 256: 108596. doi:  10.1016/j.scienta.2019.108596
    [34]
    Wang T Y, Huo Z G, Yang J Y, et al. Process grade indicator construction and evolution characteristics of late rice flood in Hunan. J Appl Meteor Sci, 2019, 30(1): 35-48. doi:  10.11898/1001-7313.20190104
    [35]
    Sultan B, Defrance D, Iizumi T. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci Rep, 2019, 9: 12834-12915. doi:  10.1038/s41598-019-49167-0
    [36]
    Wan S B. The Science of Peanut Cultivation in China. Shanghai: Shanghai Science and Technology Publishing House, 2003.
    [37]
    Guo H H, Yang L P, Li X H, et al. Situation of production and quality and development countermeasure of peanut in Huang-Huai-Hai Region. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1233-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201006017.htm
    [38]
    Ding Y H, Li X, Li Q P. Advances of surface wind speed changes over China under global warming. J Appl Meteor Sci, 2020, 31(1): 1-12. doi:  10.11898/1001-7313.20200101
    [39]
    Wang H. Difference in Water-logging on Growth of Maize Seedling and Physiological Response Mechanisms. Hefei: Anhui Agricultural University, 2018.
    [40]
    Li L. Difference in Water-logging Tolerance Among Peanut Varieties and Their Mechanisms. Changsha: Hunan Agricultural University, 2004.
    [41]
    Bishnoi N R, Krishnamoorthy H N. The effect of water-logging and gibber elicacid on growth and yield of peanut. Indian Journal of Plant Physiology, 1995, 38(1): 45-47.
    [42]
    Chen Z Y, Peng Q A. Effect on morphological characteristics and yield of rice during submergence. Anhui Agricultural Science Bulletin, 2010, 16(21): 62-63. doi:  10.3969/j.issn.1007-7731.2010.21.027
    [43]
    Zhang J, Tang F S, Zang X W, et al. Effect of waterlogging stress on peanut yield and protective enzyme system in different planting patterns. Journal of Henan Agricultural Sciences, 2014, 43(12): 46-50. doi:  10.3969/j.issn.1004-3268.2014.12.010
    [44]
    Liu D W, Li L, Zou D S, et al. Effect of water-logging on growth and agronomic trait of different peanut varieties. Chinese Journal of Eco-Agriculture, 2009, 17(5): 968-973. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200905042.htm
  • 加载中
  • -->

Catalog

    Figures(2)  / Tables(5)

    Article views (1446) PDF downloads(70) Cited by()
    • Received : 2021-03-25
    • Accepted : 2021-06-03
    • Published : 2021-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint