[1]
|
Yao J Q, Dai J H, Yao Z Q. Case analysis of the formation and evolution of 12 July 2004 severe squall line. Journal of Applied Meteorological Science, 2005, 16(6): 746-752. doi: 10.3969/j.issn.1001-7313.2005.06.005
|
[2]
|
|
[3]
|
|
[4]
|
Rinehart R E, Garvey E T. Three-dimensional storm motion detection by conventional weather radar. Nature, 1978, 273(5660): 287-289. doi: 10.1038/273287a0
|
[5]
|
Dixon M, Wiener G. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting-A radar-based methodology. Journal of Atmospheric and Oceanic Technology, 1993, 10(6): 785-797. doi: 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
|
[6]
|
|
[7]
|
Han F, Wo W F. Design and implementation of SWAN2.0 platform. Journal of Applied Meteorological Science, 2018, 29(1): 25-34. doi: 10.11898/1001-7313.20180103
|
[8]
|
Zheng Y G, Zhou K H, Sheng J, et al. Advances in techniques of monitoring, forecasting and warning of severe convective weather. Journal of Applied Meteorological Science, 2015, 26(6): 641-657. doi: 10.11898/1001-7313.20150601
|
[9]
|
Yang J, Liu L P, Xia W M, et al. Automatic identification of linear mesoscale convective system based on dynamic template function. Meteorological Monthly, 2014, 40(11): 1389-1397. doi: 10.7519/j.issn.1000-0526.2014.11.012
|
[10]
|
|
[11]
|
|
[12]
|
Tang W, Zhou Y, Dong H, et al. Current situation and international comparison of artificial intelligence technology in meteorological field in China. Advances in Meteorological Science and Technology, 2019, 9(5): 55-56;62. doi: 10.3969/j.issn.2095-1973.2019.05.009
|
[13]
|
Huang X G, Fei J F, Chen P Y. A neural network approach to predict tropical cyclone intensity. Journal of Applied Meteorological Science, 2009, 20(6): 699-705. doi: 10.3969/j.issn.1001-7313.2009.06.007
|
[14]
|
Han F, Yang L, Zhou C X, et al. An Experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. Journal of Applied Meteorological Science, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205
|
[15]
|
Zhang Z H, Miao C S, Zeng Z H, et al. Improvement and application of artificial neural networks to cloud classification. Journal of Applied Meteorological Science, 2012, 23(3): 355-363. doi: 10.3969/j.issn.1001-7313.2012.03.012
|
[16]
|
Zhang X F, Wang Z C, Mao J J, et al. Experiments on improving temperature and humidity profile retrieval for ground-based microwave radiometer. Journal of Applied Meteorological Science, 2020, 31(4): 385-396. doi: 10.11898/1001-7313.20200401
|
[17]
|
Zheng Y P, Li G Y, Li Y. Survey of application of deep learning in image recognition. Computer Engineering and Applications, 2019, 55(12): 20-36. doi: 10.3778/j.issn.1002-8331.1903-0031
|
[18]
|
|
[19]
|
Han F, long M S, Li Y A, et al. Application of cyclic neural network in radar nowcasting. Journal of Applied Meteorological Science, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106
|
[20]
|
Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognition, 2018, 77: 354-377. doi: 10.1016/j.patcog.2017.10.013
|
[21]
|
Zhang J, Howard K, Gourley J. Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. Journal of Atmospheric and Oceanic Technology, 2005, 22(1): 30-42. doi: 10.1175/JTECH-1689.1
|
[22]
|
|
[23]
|
|
[24]
|
|
[25]
|
Yu X D. Doppler Weather Radar Principle and Application. Beijing: China Meteorological Press, 2006.
|
[26]
|
Hu T. Research on Fish Recognition Based on Deep Learning. Hangzhou: Zhejiang University of Technology, 2019.
|
[27]
|
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition. arXiv preprint arXiv: 1409.1556, 2014.
|
[28]
|
Kingma D P, Ba J L. Adam: A Method for Stochastic Optimization. arXiv: 1412.6980, 2014.
|
[29]
|
Cai J Q, Tan G R, Niu R Y. Circulation pattern classification of persistent heavy rainfall in jianghuai region based on the transfer learning cnn model. Journal of Applied Meteorological Science, 2021, 32(2): 233-244. doi: 10.11898/1001-7313.20210208
|
[30]
|
|
[31]
|
|
[32]
|
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. http://dl.acm.org/citation.cfm?id=2670313
|
[33]
|
Goodfellow I J, Warde-Farley D, Mirza M, et al. Maxout Networks. arXiv preprint arXiv: 1302.4389, 2013.
|
[34]
|
Zeiler M D, Fergus R. Stochastic Pooling for Regularization of Deep Convolutional Neural Networks. arXiv preprint arXiv: 1301.3557, 2013.
|