Wang Jinlan, Yu Xiaoding, Tang Xingzhi, et al. Characteristics of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers. J Appl Meteor Sci, 2021, 32(5): 592-602. DOI:  10.11898/1001-7313.20210507.
Citation: Wang Jinlan, Yu Xiaoding, Tang Xingzhi, et al. Characteristics of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers. J Appl Meteor Sci, 2021, 32(5): 592-602. DOI:  10.11898/1001-7313.20210507.

Characteristics of Convection-triggering Drylines in the Drainage Area of Huanghe and Huaihe Rivers

DOI: 10.11898/1001-7313.20210507
  • Received Date: 2021-05-14
  • Rev Recd Date: 2021-08-03
  • Publish Date: 2021-09-30
  • Based on the surface and sounding datasets, ERA5 reanalysis data from European Centre for Medium-Range Weather Forecasts (ECMWF) and the satellite images, the characteristics of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers of China from April to September during 2010-2019 are analyzed. The result shows that the drylines mainly appear at Dezhou of Shandong, and surroundings in the north of Henan. Most of them are distributed in the quasi northwest-southeast and northeast-southwest direction, with the length of 100-200 km and the width of 50-100 km, and they generally occur at 1400 BT or 1700 BT during the daytime. The drylines mostly occur under the 500 hPa cold vortex located in Northeast China and North China, with convergence lines (or shear lines) on 700 hPa and 850 hPa weather chart, and within the low pressure behind the coastal high on the surface chart. The statistics of the surface elements shows that the temperature on the dry side is 1.9 ℃ higher than that on the wet side, while the dew point temperature on the wet side is 6.8 ℃ higher than that on dry side. The gradient of temperature, dew point temperature and specific humidity on both sides of drylines are -2.7 ℃·(100 km)-1, 10.1 ℃·(100 km)-1 and 5.9 g·kg-1·(100 km)-1, respectively. According to the statistics of sounding environment parameters, precipitable water in the wet side is higher than that on the dry side. The specific humidity on the wet side is higher than that on the dry side at 925 hPa, 850 hPa and 700 hPa. The mean convective available potential energy on the wet side is much larger than that on the dry side. The temperature differences are very small on both sides of the drylines at 850 hPa and 500 hPa, 700 hPa and 500 hPa. The significant difference on both sides of the dry side in convective available potential energy is mainly caused by the difference in water condition of the lower layers in the drainage area of Huanghe and Huaihe Rivers of China. The hydrostatic instability (conditional instability) on both sides of the drylines is similar. Also, the vertical wind shear of 0-6 km is a little bit stronger on wet side than that on the dry side.
  • Fig. 1  Surface meteorological elements on both sides of convection-triggering dryline in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019

    Fig. 2  Precipitable water on both sides of convection-triggering dryline in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019

    Fig. 3  Specific humidity on both sides of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019

    Fig. 4  Convective available potential energy, temperature differences of 700 hPa to 500 hPa and 850 hPa to 500 hPa on both sides of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019

    Fig. 5  The vertical wind shear of 0-6 km on both sides of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019

    Fig. 6  The surface chart of dryline in the drainage area of Huanghe and Huaihe Rivers at 1400 BT 11 Jun 2011

    Fig. 7  The system configuration of convection-triggering dryline in the drainage area of Huanghe and Huaihe Rivers on 11 Jun 2011

    (the arrow denotes the direction)

    Table  1  Convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019

    序号 发生时间 发生地点 伴随天气 环流背景
    1 2010-06-03T14:00,17:00 德州—淄博 雷阵雨 华北冷涡后部
    2 2010-06-17T14:00 濮阳南乐 雷阵雨 华北冷涡底部
    3 2010-07-07T14:00 原阳 雷阵雨 副热带高压外围偏西气流
    4 2011-06-08T14:00,17:00 商丘永城 雷阵雨 槽后西北气流
    5 2011-06-11T14:00,17:00 濮阳—商丘 雷阵雨、大风冰雹 华北冷涡底部
    6 2012-05-16T14:00 临沂—徐州 雷阵雨、大风 东北冷涡底部
    7 2012-05-25T14:00 保定东—泊头 雷阵雨、大风 东北冷涡后部
    8 2012-06-06T14:00,17:00 河北吴桥 雷阵雨 槽前
    9 2013-05-23T14:00 民权—扶沟 雷阵雨 槽前
    10 2014-06-10T14:00 保定—淄博 阵雨、大风 东北冷涡底部
    11 2015-08-22T14:00 安阳附近 阵雨、大风 东北冷涡底部
    12 2015-08-28T14:00 德州—泰山 阵雨、大风、冰雹 东北冷涡底部
    13 2017-04-20T14:00 河北山东交界 阵雨 东北冷涡后部
    14 2017-06-12T14:00 吴桥—济南 阵雨 脊前西北气流
    15 2018-06-13T14:00 新乡 阵雨、大风、冰雹 华北冷涡底部
    16 2019-05-10T14:00 邢台—安阳 阵雨、大风 偏西气流
    DownLoad: Download CSV

    Table  2  Soundings on both sides of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers from 2010 to 2019

    条件 要素 位置 平均值 25%百分位 75%百分位 最大值
    水汽条件 可降水量/cm 湿侧 2.5 2.0 3.2 4.0
    干侧 2.3 1.6 2.8 3.8
    700 hPa比湿/(g·kg-1) 湿侧 3.2 1.0 5.0 7.0
    干侧 2.4 0.8 4.0 6.0
    850 hPa比湿/(g·kg-1) 湿侧 5.6 3.8 8.0 11.0
    干侧 5.9 3.8 8.0 12.0
    925 hPa比湿/(g·kg-1) 湿侧 9.4 7.3 11.0 19.0
    干侧 7.4 4.8 11.0 21.0
    热力不稳定 对流有效位能/(J·kg-1) 湿侧 2214 1725 3184 4348
    干侧 614 236 800 1910
    700 hPa与500 hPa温度差/℃ 湿侧 18.3 17.0 19.3 22.0
    干侧 18.2 17.0 20.0 20.0
    850 hPa与500 hPa温度差/℃ 湿侧 29.9 29.0 31.0 35.0
    干侧 29.6 27.8 32.0 33.0
    抬升指数/℃ 湿侧 -6.9 -7.9 -6.3 -1.5
    干侧 -2.2 -3.1 -0.6 0.5
    风切变 风矢量差/(m·s-1) 湿侧 12.5 7.5 17.5 24.5
    干侧 11.2 6.3 15.7 24.4
    DownLoad: Download CSV

    Table  3  Statistics of specific humidity and convective available potential energy on both sides of convection-triggering drylines in the drainage area of Huanghe and Huaihe Rivers using ERA5 reanalysis from 2010 to 2019

    条件 要素 相对位置 平均值 25%百分位 75%百分位 最大值
    水汽条件 700 hPa比湿/(g·kg-1) 湿侧 4.5 3.6 5.6 6.5
    干侧 4.2 3.4 5.0 6.5
    850 hPa比湿/(g·kg-1) 湿侧 9.4 8.1 11.8 13.0
    干侧 8.1 6.8 9.6 12.5
    925 hPa比湿/(g·kg-1) 湿侧 10.2 9.3 12.6 14.0
    干侧 8.7 7.8 10.3 12.0
    热力不稳定条件 对流有效位能/(J·kg-1) 湿侧 1000 288 1550 2500
    干侧 331 100 325 1400
    700 hPa与500 hPa温度差/℃ 湿侧 17.8 16.6 18.9 21.6
    干侧 17.8 16.8 18.8 21.5
    850 hPa与500 hPa温度差/℃ 湿侧 29.2 27.9 30.4 34.5
    干侧 29.2 27.9 30.5 34.2
    DownLoad: Download CSV
  • [1]
    Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301. doi:  10.11898/1001-7313.20190304
    [2]
    Yu X D, Wang X M, Li W L, et al. Thunderstorm and Strong Convection Nowcasting. Beijing: China Meteorological Press, 2020.
    [3]
    Fritsch J M, Carbone R E. Improving quantitative precipitation forecasts in warm season: An USWRP research and development strategy. Bull Amer Meteor Soc, 2004, 85(7): 955-965. doi:  10.1175/BAMS-85-7-955
    [4]
    Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196. doi:  10.11898/1001-7313.20200206
    [5]
    Zhang X L, Chen Y, Zhang T. Meso-scale convective weather analysis and severe convective weather forecasting. Acta Meteor Sinica, 2012, 70(4): 642-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204005.htm
    [6]
    Wang X M, Yu X D, Zhou X G. Study of Northeast China torando: The environmental characteristics. Acta Meteor Sinica, 2015, 73(3): 425-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503002.htm
    [7]
    Yu X D, Zhou X G, Wang X M. A preliminary case study of elevated convection in China. Acta Meteor Sinica, 2016, 74(6): 902-918. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201606007.htm
    [8]
    Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605
    [9]
    Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308
    [10]
    Yu X D, Zhou X G, Wang X M. The advances in the now casting techniques on thunderstorms and severe convection. Acta Meteor Sinica, 2012, 70(3): 311-337. doi:  10.3969/j.issn.1004-4965.2012.03.003
    [11]
    Gao X M, Yu X D, Wang L J, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. doi:  10.11898/1001-7313.20180210
    [12]
    Wang F X, Yu X D, Pei Y J, et al. Rader echo characteristics of thunderstorm gales and forecast key points in Hebei Province. J Appl Meteor Sci, 2016, 27(3): 342-351. doi:  10.11898/1001-7313.20160309
    [13]
    Ding Y H. Analysis and forecast of severe convective weather. Meteor Mon, 1978, 4(5): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197805011.htm
    [14]
    Huang X X, Yu X D, Yan L J, et al. Contrastive analysis of two intense typhoon-tornado cases with synoptic and Doppler weather radar data in Guangdong. J Appl Meteor Sci, 2018, 29(1): 70-83. doi:  10.11898/1001-7313.20180107
    [15]
    Khodayar S, Kalthoff N, Wickert J, et al. High-resolution representation of the mechanisms responsible for the initiation of isolated thunderstorms over flat and complex terrains: Analysis of CSIP and COPS cases. Meteor Atmos Phys, 2013, 119(3/4): 109-124. doi:  10.1007/s00703-012-0232-6
    [16]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [17]
    Emerson T J. Case Studies of Convective Initiations Using Dual-Doppler Analysis During the Convective and Orographically-induced Precipitation Study(COPS)//Proceedings of the 10th Annual Student Conference. Amer Meteor Soc, 2011.
    [18]
    Luo H, Xiao D X, Kuang Q M, et al. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin. J Appl Meteor Sci, 2020, 31(4): 460-470. doi:  10.11898/1001-7313.20200408
    [19]
    Fujita T T. Structure and movement of a dry front. Bull Amer Meteor Soc, 1958, 39(11): 574-582. doi:  10.1175/1520-0477-39.11.574
    [20]
    Rhea J O. A study of thunderstorm formation along drylines. J Appl Meteor Sci, 1966, 5(1): 58-63. doi:  10.1175/1520-0450(1966)005<0058:ASOTFA>2.0.CO;2
    [21]
    Schaefer J T. The Dryline Mesoscale Meteorology and Forecasting. Amer Meteor Soc, 1986: 549-572. http://ci.nii.ac.jp/naid/10018882300
    [22]
    Wang X M, Yu X D, Zhou X G, et al. Study on the formation and evolution of "6.3" damage wind. Plateau Meteor, 2012, 31(2): 504-514. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202025.htm
    [23]
    Zheng Y Y, Zhang X C, Zhu H F, et al. Study of squall line genesis with northeast cold vortex. Plateau Meteor, 2014, 33(1): 261-269. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201401026.htm
    [24]
    Wang X L, Wang H Y, Wang S S, et al. Analysis on mechanism of mesoscale rainstorm triggered by quasistationary dryline in boundary layer. Plateau Meteor, 2015, 34(5): 1310-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201505012.htm
    [25]
    Zhou X Y, Peng J, Liu J. Analysis of circulation configuration and triggering mechanism of the heavy rainfall weather in Korla city. Desert and Oasis Meteor, 2015, 9(5): 47-55. doi:  10.3969/j.issn.1002-0799.2015.05.008
    [26]
    Qin R, Chen M X. Impact of a front-dryline merger on convection initiation near a mountain ridge in Beijing. Mon Wea Rev, 2017, 145(7): 2611-2633. doi:  10.1175/MWR-D-16-0369.1
    [27]
    Bai L Q, Meng Z Y, Huang Y P, et al. Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: A case study. J Geophy Res Atmos, 2019, 124(5): 2379-2396. doi:  10.1029/2018JD029832
    [28]
    Fang Z L, Yu X D, Wang X M. Statistical analysis of drylines in Northeast China. Acta Meteor Sinica, 2020, 78(2): 260-276. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202002009.htm
    [29]
    Zhang Y P, Niu S Z, Zheng S L, el al. Investigation and warning practicability analysis of the 6 July 2017 tornado in Zhoukou City. Meteor Mon, 2019, 45(8): 1135-1148.
    [30]
    Sun S Q, Meng C. The formation of a meso-β day line and local convective rainstorm. Acta Meteor Sinica, 1992, 50(2): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199202004.htm
    [31]
    Hoch J, Markowski P. A climatology of springtime dryline position in the US Great Plains region. J Climate, 2005, 18(12): 2132-2137. doi:  10.1175/JCLI3392.1
    [32]
    Zheng Y G, Zhang C X, Chen J. Climatic back ground of warm-season convective weather in North China based on the NCEP Analysis. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43(5): 600-608. doi:  10.3321/j.issn:0479-8023.2007.05.003
    [33]
    Tao Z Y, Fan J H, Li K Y, et al. On the physical meaning of 4 basic meteorological elements and applicability to weather forecasting. Advances in Meteorological Science and Technology, 2016, 6(5): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201605018.htm
    [34]
    Liu W. Statistical relation between monthly mean precipitable water and surface-level humidity over global oceans. Mon Wea Rev, 1986, 114: 1591-1602. doi:  10.1175/1520-0493(1986)114<1591:SRBMMP>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(3)

    Article views (1456) PDF downloads(167) Cited by()
    • Received : 2021-05-14
    • Accepted : 2021-08-03
    • Published : 2021-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint