化学物种 | 密度/(kg·m-3) | κ |
NH4NO3 | 1725 | 0.68 |
(NH4)2SO4 | 1769 | 0.52 |
NH4HSO4 | 1780 | 0.56 |
SOA | 1400 | 0.10 |
POA | 1000 | 0 |
黑碳气溶胶 | 1800 | 0 |
Citation: | Gao Qian, Liu Quan, Bi Kai, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. DOI: 10.11898/1001-7313.20210602. |
Table 1 Density and hygroscopicity parameter(κ) of pure component
化学物种 | 密度/(kg·m-3) | κ |
NH4NO3 | 1725 | 0.68 |
(NH4)2SO4 | 1769 | 0.52 |
NH4HSO4 | 1780 | 0.56 |
SOA | 1400 | 0.10 |
POA | 1000 | 0 |
黑碳气溶胶 | 1800 | 0 |
[1] |
Ding Y H, Li Q P, Liu Y J, et al. Atmospheric aerosols, air pollution and climate change. Meteor Mon, 2009, 35(3): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200903002.htm
|
[2] |
Ma X L, Gao X N, Liu Yu, et al. Simulations of aerosol influences on the East Asian winter monsoon. J Appl Meteor Sci, 2018, 29(3): 333-343. doi: 10.11898/1001-7313.20180307
|
[3] |
Tao X Y, Huang J P, Xie X J, et al. Observational analysis of the influence of aerosol radiation effect on planetary boundary layer structure and entrainment characteristics. Chinese J Atmos Sci, 2020, 44(6): 1213-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006005.htm
|
[4] |
Xu J, Chen D, Zhao X J, et al. Evaluation on SO2 emission inventory optimizing applied to RMAPS_Chem V1.0 system. J Appl Meteor Sci, 2019, 30(2): 164-176. doi: 10.11898/1001-7313.20190204
|
[5] |
Xu Y, Ding Y H, Zhao Z C. Detection and evolution of effect of human activities on climatic change in East Asia in recent 30 years. J Appl Meteor Sci, 2002, 13(5): 513-525. http://qikan.camscma.cn/article/id/20020569
|
[6] |
Zhang T H, Liao H, Chang W Y. Direct radiative forcing by dust in China based on Atmospheric Chemistry and Climate Model Intercomparison Project(ACCMIP) datasets. Chinese J Atmos Sci, 2016, 40(6): 1242-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201606011.htm
|
[7] |
Tsigaridis K, Krol M, Dentener F J, et al. Change in global aerosol composition since preindustrial times. Atmos Chem Phys, 2006, 6: 5143-5162. doi: 10.5194/acp-6-5143-2006
|
[8] |
Li D P, Cheng X H, Sun Z A, et al. Radiative effects of aerosols in different areas of Beijing. J Appl Meteor Sci, 2018, 29(5): 609-618. doi: 10.11898/1001-7313.20180509
|
[9] |
Tian H, Ma J Z, Li W L, et al. Simulation of forcing of sulfate aerosol on direct radiation and its climate effect over middle and eastern China. J Appl Meteor Sci, 2005, 16(3): 322-333. http://qikan.camscma.cn/article/id/20050341
|
[10] |
Jia X F, Yan P, Meng Z Y, et al. Characteristics of PM2.5 in heavy pollution events in Beijing and surrounding areas from November to December in 2016. J Appl Meteor Sci, 2019, 30(3): 302-315. doi: 10.11898/1001-7313.20190305
|
[11] |
Myhre G, Berglen T F, Johnsrud M, et al. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmos Chem Phys, 2009, 9: 1365-1392. doi: 10.5194/acp-9-1365-2009
|
[12] |
Dusek U, Frank G, Hildebrandt L, et al. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 2006, 312: 1375-1378. doi: 10.1126/science.1125261
|
[13] |
Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[14] |
Twomey S. The nuclei of natural cloud formation part Ⅱ: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure and Applied Geophysics, 1959, 43: 243-249. doi: 10.1007/BF01993560
|
[15] |
Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev Geophys, 2000, 38: 513-543. doi: 10.1029/1999RG000078
|
[16] |
Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res, 1997, 102: 6831-6864. doi: 10.1029/96JD03436
|
[17] |
Penner J E, Zhang S Y, Chuang C C. Soot and smoke aerosol may not warm climate. J Geophys Res Atmos, 2003, 108: 1-9. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEhQxMC4xMDI5LzIwMDNKRDAwMzQwORoIcXpwZTZ6dWU%3D
|
[18] |
Zhang X Y, Wang J Z, Wang Y Q, et al. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors. Atmos Chem Phys, 2015, 15: 12935-12952. doi: 10.5194/acp-15-12935-2015
|
[19] |
Huang R J, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514: 218-222. doi: 10.1038/nature13774
|
[20] |
Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi: 10.11898/1001-7313.20200506
|
[21] |
Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. doi: 10.11898/1001-7313.20200311
|
[22] |
Liu Q, Liu D, Gao Q, et al. Vertical characteristics of aerosol hygroscopicity and impacts on optical properties over the North China Plain during winter. Atmos Chem Phys, 2020, 20: 3931-3944. doi: 10.5194/acp-20-3931-2020
|
[23] |
Zhao D, Huang M, Tian P, et al. Vertical characteristics of black carbon physical properties over Beijing region in warm and cold seasons. Atmos Environ, 2019, 213: 296-310. doi: 10.1016/j.atmosenv.2019.06.007
|
[24] |
Fan J, Leung L R, Li Z, et al. Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J Geophys Res Atmos, 2012, 117, D00K36. http://www.onacademic.com/detail/journal_1000035848175710_229c.html
|
[25] |
Liu Q, Quan J, Jia X, et al. Vertical profiles of aerosol composition over Beijing, China: Analysis of in situ aircraft measurements. J Atmos Sci, 2019, 76: 231-245. doi: 10.1175/JAS-D-18-0157.1
|
[26] |
Zhao C S, Peng D Y, Duan Y. The impacts of sea-salt and nss-sulfate aerosols on cloud microproperties. J Appl Meteor Sci, 2005, 16(4): 417-425. http://qikan.camscma.cn/article/id/e943451b-7985-445e-96fa-72d05eab6ee7
|
[27] |
Duan J, Mao J T. Progress in research on interaction between aerosol and cloud. Advances in Earth Science, 2008, 23(3): 252-261. doi: 10.3321/j.issn:1001-8166.2008.03.005
|
[28] |
Andreae M, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 2008, 89: 13-41. doi: 10.1016/j.earscirev.2008.03.001
|
[29] |
Liu X, Gu J, Li Y, et al. Increase of aerosol scattering by hygroscopic growth: Observation, modeling, and implications on visibility. Atmos Res, 2013, 132/133: 91-101. doi: 10.1016/j.atmosres.2013.04.007
|
[30] |
Farmer D K, Cappa C D, Kreidenweis S. Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chemical Reviews, 2015, 115: 1-49. doi: 10.1021/cr500685g
|
[31] |
Köhler H. The nucleus in and the growth of hygroscopic droplets. Transactions of the Faraday Society, 1936, 32: 1152-1161. doi: 10.1039/TF9363201152
|
[32] |
Drewnick F, Hings S, Decarlo P, et al. A new time-of-flight aerosol mass spectrometer(TOF-AMS)-Instrument description and first field deployment. Aerosol Science & Technology, 2005, 39: 637-658. http://www.researchgate.net/profile/Ken_Demerjian/publication/44158351_A_New_Time-of-Flight_Aerosol_Mass_Spectrometer_TOF-AMS-Instrument_Description_and_First_Field_Deployment/links/571e461408aefa6488999d22.pdf
|
[33] |
Canagaratna M R, Jayne J T, Jimenez J L, et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26: 185-222. doi: 10.1002/mas.20115
|
[34] |
Ulbrich I M, Canagaratna M R, Zhang Q, et al. Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos Chem Phys, 2009, 9: 2891-2918. doi: 10.5194/acp-9-2891-2009
|
[35] |
Drinovec L, Monik G, Zotter P, et al. The "dual-spot" Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Measurement Techniques, 2015, 8: 1965-1979. doi: 10.5194/amt-8-1965-2015
|
[36] |
Tian P, Liu D, Zhao D, et al. In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing. Atmos Chem Phys, 2020, 20: 2603-2622. doi: 10.5194/acp-20-2603-2020
|
[37] |
Liu P, Zhao C, Zhang Q, et al. Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B Chem Phys Meteor, 2009, 61: 756-767. doi: 10.1111/j.1600-0889.2009.00440.x
|
[38] |
Petters M D, Kreidenweis S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys, 2007, 6: 8435-8456.
|
[39] |
Gysel M, Crosier J, Topping D O, et al. Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2. Atmos Chem Phys, 2007, 7: 6131-6144. doi: 10.5194/acp-7-6131-2007
|
[40] |
Wu Z J, Zheng J, Shang D J, et al. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmos Chem Phys, 2016, 16: 1123-1138. doi: 10.5194/acp-16-1123-2016
|
[41] |
Park K, Kittelson D B, Zachariah M R, et al. Measurement of inherent material density of nanoparticle agglomerates. J Nanopart Res, 2004, 6: 267-272. doi: 10.1023/B:NANO.0000034657.71309.e6
|
[42] |
Kleinman L, Daum P H, Lee Y N, et al. Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx. Atmos Chem Phys, 2012, 12: 207-223. doi: 10.5194/acp-12-207-2012
|
[43] |
Henning S, Weingartner E, Schmidt S, et al. Size-dependent aerosol activation at the high-alpine site Jungfraujoch (3580 m asl). Tellus B Chem Phys Meteor, 2002, 54: 82-95. doi: 10.3402/tellusb.v54i1.16650
|
[44] |
Mertes S, Lehmann K, Nowak A, et al. Link between aerosol hygroscopic growth and droplet activation observed for hill-capped clouds at connected flow conditions during FEBUKO. Atmos Environ, 2005, 39: 4247-4256. doi: 10.1016/j.atmosenv.2005.02.010
|
[45] |
Gillani N V, Schwartz S E, Leaitch W R, et al. Field observations in continental stratiform clouds: Partitioning of cloud particles between droplets and unactivated interstitial aerosols. J Geophys Res, 1995, 100: 18687-18706. doi: 10.1029/95JD01170
|
[46] |
Hudson J G, Noble S, Jha V. Stratus cloud supersaturations. Geophys Res Lett, 2010, 37, L2813.
|