Li Yiyu, Sun Hongping, Yang Junmei, et al. Characteristics of aerosol and cloud over the central plain of North China in summer. J Appl Meteor Sci, 2021, 32(6): 665-676. DOI:   10.11898/1001-7313.20210603.
Citation: Li Yiyu, Sun Hongping, Yang Junmei, et al. Characteristics of aerosol and cloud over the central plain of North China in summer. J Appl Meteor Sci, 2021, 32(6): 665-676. DOI:   10.11898/1001-7313.20210603.

Characteristics of Aerosol and Cloud over the Central Plain of North China in Summer

DOI: 10.11898/1001-7313.20210603
  • Received Date: 2021-08-05
  • Rev Recd Date: 2021-10-20
  • Publish Date: 2021-11-23
  • The vertical distribution of aerosols and clouds is a key issue in the indirect climate effects of aerosols. Based on the aerosol and cloud droplet number concentration data observed by 6 aircrafts over the central plain of North China from July to August in 2018, the vertical distribution and spectral characteristics of aerosols and clouds are studied. The results show that the mean value of aerosol number concentration ( Na ) of this area is higher than that in Central China, the in-cloud aerosol number concentration (Nacc) accounts for over 80% of the total concentration, and the mean particle diameter ( Dm ) is between 0.12 and 0.52 μm, which means fine particles contribute the largest proportion. The aerosol number concentration decreases with the height. The total aerosol number concentration is higher with middle and high stratus comparing to low-level stratus. The vertical distribution of Na is significantly affected by atmospheric stratification, as inversion temperature layer block the vertical transport of aerosols. The vertical distribution of mean diameter below 3500 m is relatively stable, with an average of 0.23 μm, while increases with the height above 3500 m. The vertical distribution of aerosol particle mean diameter at high altitude (above 2000 m) is greatly affected by relative humidity. Compared with the vertical distribution of aerosol number concentration and mean diameter, the horizontal variety is smaller. In low-level stratus, the cloud droplet number concentration (Nc) is large, and the liquid water content (L) is small. In middle and high stratus, the cloud droplet number concentration is small, and the liquid water content is large. The probability distribution function of cloud droplet number concentration and liquid water content are bimodal distribution, and the probability distribution function of cloud droplet effective radius (Re) show a single mode. The distribution of aerosol number concentration spectrum shows multi-peak distribution, and the average aerosol spectrum show three-peak distribution. The distribution of cloud droplet number concentration spectrum shows a single peak, which appears at the scale of 9-16 μm, and the spectral width of cloud droplets is 50 μm. The parameter characteristics of aerosol spectral distribution obtained by fitting aerosol spectral distribution can provide an important in situ measurement basis for improving the parameterized schemes such as regional climate model and aerosol-cloud model.
  • Fig. 1  Vertical distributions of Na and Dm

    Fig. 2  Vertical distributions of temperature and relative humidity(a), Na and Dm (b) during F3 on 31 Jul 2018

    Fig. 3  Vertical distributions of temperature, relative humidity, Na and Dm during F4 on 22 Aug 2018

    (a)temperature, relative humidity during take off, (b) Na and Dm during take off, (c)temperature, relative humidity during landing, (d) Na and Dm during landing

    Fig. 4  Horizontal distributions of Na and Dm during F2 on 26 Jul 2018

    Fig. 5  Distributions of aerosol particles during six flights

    Fig. 6  Mean size distributions of aerosol particles during six flights

    Fig. 7  Vertical distributions of Nc and L during F1-F6

    Fig. 8  Time series of Nc and L during F3

    (the nine clouds are marked byⅠ-Ⅸ)

    Fig. 9  Cloud droplet size distributions for cloud Ⅰ-Ⅸ

    Fig. 10  The probability distribution functions of Nc, L and Re

    Table  1  Summary of six flights

    编号 日期 飞行观测时间 垂直高度范围/m 天气条件
    F1 2018-07-21 11:48—13:00 786~5044 中-低层云
    F2 2018-07-26 16:09—17:10 780~3778 中-高层云
    F3 2018-07-31 17:26—18:52 782~4410 高层云
    F4 2018-08-22 10:50—12:14 788~4685 中-高层云
    F5 2018-08-22 16:36—17:40 785~4691 中-低层云
    F6 2018-08-30 13:53—15:26 786~5687 中-低层云
    DownLoad: Download CSV

    Table  2  Statistics of observed aerosol parameters

    架次 Na /cm-3 Dm /μm
    平均值 最大值 标准差 Nacc 平均值 最大值 标准差
    F1 114.97 1275.69 195.93 98.83 0.43 2.65 0.43
    F2 821.36 10493.30 911.91 663.36 0.12 0.53 0.01
    F3 198.27 3001.23 280.91 176.64 0.43 2.72 0.40
    F4 86.83 730.10 118.30 74.71 0.50 2.45 0.49
    F5 127.02 1008.35 165.99 109.45 0.52 2.89 0.44
    F6 130.98 1004.96 179.52 114.09 0.46 3.00 0.47
    DownLoad: Download CSV
  • [1]
    Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate, and the hydrological cycle. Science, 2002, 294(5549): 2119-2124. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=5884898&site=ehost-live
    [2]
    Ramanathan V, Crutzen P J, Lelieveld J, et al. Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res Atmos, 2001, 106(D22): 28371-28398. doi:  10.1029/2001JD900133
    [3]
    Solomon S, Qin D, Manning M, et al. IPCC. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press, 2007.
    [4]
    Li J X, Yin Y, Li P R, et al. Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China. Atmos Res, 2015, 155: 73-86. doi:  10.1016/j.atmosres.2014.12.004
    [5]
    Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506
    [6]
    Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by skyradiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311
    [7]
    Han Z, Montague D C, Snider J R. Airborne measurements of aerosol extinction in the lower and middle troposphere over Wyoming, USA. Atmos Environ, 2003, 37(6): 789-802. doi:  10.1016/S1352-2310(02)00952-4
    [8]
    Li J X, Li P R, Ren G, et al. Aircraft measurements of aerosol distribution, warm cloud microphysical properties, and their relationship over the Eastern Loess Plateau in China. Tellus Ser B, Chem Phys Meteor, 2019, 71(1): 1-18. doi:  10.1080/16000889.2019.1623639
    [9]
    Chen X T, Kang S C, Yang J H, et al. Investigation of black carbon climate effects in the Arctic in winter and spring. Sci Total Environ, 2020, 751: 142-145. http://www.sciencedirect.com/science/article/pii/S0048969720356746
    [10]
    Liu Q, Jia X C, Quan, J N, et al. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events. Sci Rep, 2018, 8(1): 6095. doi:  10.1038/s41598-018-24366-3
    [11]
    Xiao H, Shu W X, Fu D H, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles. J Appl Meteor Sci, 2021, 32(3): 257-271. doi:  10.11898/1001-7313.20210301
    [12]
    Zhang W J, Zhang X Y, Zhong J T, et al. The effects of the "two-way feedback mechanism" on the maintenance of persistent heavy aerosol pollution over areas with relatively light aerosol pollution in northwest China. Sci Total Environ, 2019, 688: 642-652. doi:  10.1016/j.scitotenv.2019.06.295
    [13]
    Li D C, Lin C Z, Yin Y. The vertical transport of the ozone and carbon monoxide by severe convective weather. J Appl Meteor Sci, 2019, 30(1): 82-92. doi:  10.11898/1001-7313.20190108
    [14]
    Wang H, Li Y, Wen Y R. Observational characteristics of a hybrid severe convective event in the Sichuan-Tibet Region. J Appl Meteor Sci, 2021, 32(5): 567-579. doi:  10.11898/1001-7313.20210505
    [15]
    Jiao J, Jia X F, Yan P, et al. Chemical characteristics of PM10 at background stations of central and eastern China in 2016-2017. J Appl Meteor Sci, 2021, 32(1): 65-77. doi:  10.11898/1001-7313.20210106
    [16]
    Wang Y, Khalizov A, Levy M, et al. New directions: Light absorbing aerosols and their atmospheric impacts. Atmos Environ, 2013, 81: 713-715. doi:  10.1016/j.atmosenv.2013.09.034
    [17]
    Duan J, Lou X F, Chen Y, et al. Aircraft measurements of aerosol vertical distributions and its activation efficiency over the Pearl River Delta. J Appl Meteor Sci, 2019, 30(6): 677-689. doi:  10.11898/1001-7313.20190604
    [18]
    Yang Y M, Zhou Y Q, Cai Z X. A case study of aircraft observation of aerosol vertical distribution and activation characteristics. Meteor Mon, 2020, 46(9): 1199-1209. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009007.htm
    [19]
    Sha T, Ma X Y, Yin Y, et al. Aircraft measurements and analysis of the vertical distribution of aerosol particles and CCN over the Shijiazhuang area. Transactions of Atmospheric Sciences, 2019, 42(4): 521-530. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201904005.htm
    [20]
    You J P, Gao J Q, Huang M Y, et al. Analysis of the characteristics of the aircraft-observed atmospheric aerosols in Pearl River Delta. Journal of Tropical Meteorology, 2015, 31(1): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201501008.htm
    [21]
    Fan Y, Guo X L, Fu D H, et al. Observational studies on aerosol distribution during August to September in 2004 over Beijing and its surrounding areas. Climatic and Environmental Research, 2007, 12(1): 49-62. doi:  10.3969/j.issn.1006-9585.2007.01.006
    [22]
    Hu X F, Qin Y S, Duan Y, et al. Aircraft study of aerosol and CCN under foggy/hazy weather condition in autumn over the central and southern Hebei. Journal of Arid Meteorology, 2016, 34(3): 481-493. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201603011.htm
    [23]
    Liu P F, Zhao C S, Zhang Q, et al. Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus Ser B, Chem Phys Meteor, 2009, 61(5): 756-767. doi:  10.1111/j.1600-0889.2009.00440.x
    [24]
    Shi L X, Duan Y. Observations of cloud condensation nuclei in North China. Acta Meteor Sinica, 2007, 65(4): 644-652. doi:  10.3321/j.issn:0577-6619.2007.04.016
    [25]
    Sun X, Yin Y, Han Y, et al. Distribution of cloud particles and cloud condensation nuclei during haze/fog events in Shijiazhuang. China Environmental Science, 2012, 32(7): 1165-1170. doi:  10.3969/j.issn.1000-6923.2012.07.003
    [26]
    Sun Y W, Sun X, Yin Y, et al. Aerosol distribution over wetlands on north China Plain. Journal of Lanzhou University(Nat Sci Ed), 2010, 46(Suppl Ⅰ): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK2010S1058.htm
    [27]
    Li J X, Yin Y, Li P R, et al. Aircraft measurements of aerosol spetial distribution properties in Shanxi Province in summer. China Environmental Science, 2014, 34(8): 1950-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201408007.htm
    [28]
    Luan T, Guo X L, Zhang T H, et al. The scavenging process and physical removing mechanism of pollutant aerosols by different precipitation intensities. J Appl Meteor Sci, 2019, 30(3): 279-291. doi:  10.11898/1001-7313.20190303
    [29]
    Liang Z H, Wang D H, Liang Z M. Spatio-temporal characteristics of boundary layer height derived from soundings. J Appl Meteor Sci, 2020, 31(4): 447-459. doi:  10.11898/1001-7313.20200407
    [30]
    Yan S M, Wang Y, Guo W, et al. Characteristics, transportation, pathways, and potential sources of air pollution during autumn and winter in Taiyuan. Environmental Science, 2019, 40(11): 4801-4809. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201911007.htm
    [31]
    Li Y Y, Yang H R, Wang N, et al. Formation analysis of a severe air pollution event in Taiyuan. Journal Meteorology and Environment, 2018, 34(2): 11-18. doi:  10.3969/j.issn.1673-503X.2018.02.002
    [32]
    Bai X Y, Tian H Z, Liu X Y, et al. Spatial-temporal variation characteristics of air pollution and apportionment of contributions by different sources in Shanxi province of China. Atmos Environ, 2021, 244, 117926. doi:  10.1016/j.atmosenv.2020.117926
    [33]
    Kleinman L I, Daum P H, Lee Y N, et al. Aerosol concentration and size distribution measured below, in, and above cloud from the DOEG-1 during VOCALS-REx. Atmos Chem Phys, 2012, 12(1): 207-223. doi:  10.5194/acp-12-207-2012
    [34]
    Yang J M, Li J X, Li P R, et al. Spatial distribution and impacts of aerosols on clouds under Meiyu frontal weather background over central China based on aircraft observations. J Geophys Res Atmos, 2020, 125(15), e2019JD031915. doi:  10.1029/2019JD031915
    [35]
    Hao J, Yin Y, Kuang X, et al. Aircraft measurements of the aerosol spatial distribution and relation with clouds over eastern China. Aerosol Air Qual Res, 2017, 17(12): 3230-3243. doi:  10.4209/aaqr.2016.12.0576
    [36]
    Sun X, Yin Y, Sun W Y, et al. Seasonal and vertical variations in aerosol distribution over Shijiazhuang, China. Atmos Environ, 2013, 81: 245-252. doi:  10.1016/j.atmosenv.2013.08.009
    [37]
    Johnson D W, Osborne S, Wood R, et al. Observations of the evolution of the aerosol, cloud and boundary-layer characteristics during the 1st ACE-2 Lagrangian experiment. Tellus Ser B Chem Phys Meteor, 2016, 52(2): 348-374. http://www.researchgate.net/profile/Karsten_Suhre/publication/227733129_Observations_of_the_evolution_of_the_aerosol_cloud_and_boundary-layer_characteristics_during_the_1st_ACE-2_Lagrangian_experiment/links/0046352f072916a118000000.pdf
    [38]
    Li J X, Liu X G, Yuan L, et al. Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China. J Environ Sci, 2015, 34(8): 44-56. http://www.sciencedirect.com/science/article/pii/S0169809514004311
    [39]
    Wang P F, Li Z H. Microscopic Cloud Physics. Beijing: China Meteorological Press, 1989.
    [40]
    Lü Y H, Lei H, Yang J. Aircraft measurements of cloud-aerosol interaction over East Inner Mongolia. Adv Atmos Sci, 2017, 34(8): 983-992. doi:  10.1007/s00376-017-6242-z
    [41]
    Zhao C F, Qiu Y M, Dong X B, et al. Negative aerosol-cloud re relationship from aircraft observations over Hebei, China. Earth and Space Science, 2018, 5(1): 19-29. doi:  10.1002/2017EA000346
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(2)

    Article views (1443) PDF downloads(165) Cited by()
    • Received : 2021-08-05
    • Accepted : 2021-10-20
    • Published : 2021-11-23

    /

    DownLoad:  Full-Size Img  PowerPoint