[1]
|
Baumgardner D, Brenguier J L, Bucholtz A, et al. Airborne instruments to measure atmospheric aerosol particles, clouds and radiation:A cook's tour of mature and emerging technology. Atmos Res, 2011, 102:10-29. doi: 10.1016/j.atmosres.2011.06.021
|
[2]
|
|
[3]
|
Lawson R P, Jensen E, Mitchell D L, et al. Microphysical and radiative properties of tropical clouds investigated in TC4 and NAMMA. J Geophys Res, 2010, 115, D10(D00J08). DOI: 10.1029/2009JD013017.
|
[4]
|
Sukovich E M, Kingsmill D E. Variability of graupel and snow observed in tropical oceanic convection by aircraft during TRMM KWAJEX. J Appl Meteor Climatol, 2009, 48: 185-198. doi: 10.1175/2008JAMC1940.1
|
[5]
|
Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
|
[6]
|
Leroy D, Fontaine E, Schwarzenboeck A, et al. Ice crystal sizes in high ice water content clouds. Part Ⅱ: Statistics of mass diameter percentiles in tropical convection observed during the HAIC/HIWC project. J Atmos Oceanic Technol, 2017, 34(1): 117-136. doi: 10.1175/JTECH-D-15-0246.1
|
[7]
|
|
[8]
|
Guo X L, Fang C G, Lu G X, et al. Progress of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[9]
|
|
[10]
|
Li D Q, Li K K, Li H Y, et al. Design and implementation of mobile application fro real-time monitoring of weather-modification aircraft operations. J Appl Meteor Sci, 2019, 30(6): 745-758. doi: 10.11898/1001-7313.20190610
|
[11]
|
Hou T, Lei H, Hu Z. A comparative study of the microstructure and precipitation mechanisms for two stratiform clouds in China. Atmos Res, 2010, 96: 447-460. doi: 10.1016/j.atmosres.2010.02.004
|
[12]
|
|
[13]
|
Yang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 1-19.
|
[14]
|
|
[15]
|
|
[16]
|
Mason B J. The shapes of snow crystals-Fitness for purpose?. Quart J Roy Meteor Soc, 1994, 120(518): 849-860.
|
[17]
|
Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi: 10.11898/1001-7313.20200309
|
[18]
|
Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi: 10.11898/1001-7313.20210206
|
[19]
|
|
[20]
|
Hu Y, Winker D, Vaughan M, et al. CALIPSO/CALIOP cloud phase discrimination algorithm. J Atmos Oceanic Technol, 2009, 26(11): 2293-2309. doi: 10.1175/2009JTECHA1280.1
|
[21]
|
Lou X F, Fu Y, Sun J. A numerical seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. doi: 10.11898/1001-7313.20190603
|
[22]
|
Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi: 10.11898/1001-7313.20190602
|
[23]
|
Dong Q, Zhang F, Zong Z P. Objective precipitation type forcast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. doi: 10.11898/1001-7313.20200502
|
[24]
|
|
[25]
|
|
[26]
|
|
[27]
|
|
[28]
|
|
[29]
|
Droplet Measurement Technologies. Data Analysis User's Guide Chapter Ⅱ: Single Particle Imaging. 2009: 1-34.
|
[30]
|
Korolev A, Emery E, Creelman K. Modification and tests of particle probe tips to mitigate effects of ice shattering. J Atmos Oceanic Technol, 2013, 30(4): 690-708. doi: 10.1175/JTECH-D-12-00142.1
|
[31]
|
Jackson R C, McFarquhar G M, Stith J, et al. An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J Atmos Oceanic Technol, 2014, 31(12): 2567-2590. doi: 10.1175/JTECH-D-13-00239.1
|
[32]
|
|
[33]
|
Field P R, Heymsfield A J, Bansemer A. Shattering and particle interarrival times measured by optical array probes in ice clouds. J Atmos Oceanic Technol, 2006, 23(10): 1357-1371. doi: 10.1175/JTECH1922.1
|
[34]
|
|
[35]
|
Bailey M P, Hallett J. A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS Ⅱ, and other field studies. J Atmos Sci, 2009, 66(9): 2888-2899. doi: 10.1175/2009JAS2883.1
|
[36]
|
O'Shea S J, Crosier J, Dorsey J, et al. Revisiting particle sizing using greyscale optical array probes: Evaluation using laboratory experiments and synthetic data. Atmos Meas Tech, 2019, 12(6): 3067-3079. doi: 10.5194/amt-12-3067-2019
|
[37]
|
O'Shea S, Crosier J, Dorsey J, et al. Characterising optical array particle imaging probes: Implications for small ice crystal observations. Atmos Meas Tech, 2021, 14(3): 1917-1939. doi: 10.5194/amt-14-1917-2021
|
[38]
|
Heymsfield A J, Parrish J L. A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J Appl Meteor, 1978, 17(10): 1566-1572. doi: 10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2
|
[39]
|
Baumgardner D, Abel S, Axisa D, et al. Cloud ice properties: In situ measurement challenges. Meteor Monogr, 2017, 58: 9.1-9.23. doi: 10.1175/AMSMONOGRAPHS-D-16-0011.1
|