设备类型 | 测量范围 | 探测要素 |
热线含水量仪 | 0~3 g·m-3 | 液态水含量 |
云粒子探头 | 2~50 μm | 小云粒子谱 |
云粒子图像探头 | 25~1550 μm | 大云粒子谱、二维图像 |
降水粒子图像探头 | 100~6200 μm | 降水粒子谱、二维图像 |
飞机综合气象要素测量系统 | 温、压、湿、风、GPS轨迹 |
Citation: | Liu Xiaolu, Zhang Yuan, Liu Dongsheng. Calibration for data observed by airborne hot-wire liquid water content sensor. J Appl Meteor Sci, 2021, 32(6): 748-758. DOI: 10.11898/1001-7313.20210609. |
Table 1 Airborne cloud microphysical detection system
设备类型 | 测量范围 | 探测要素 |
热线含水量仪 | 0~3 g·m-3 | 液态水含量 |
云粒子探头 | 2~50 μm | 小云粒子谱 |
云粒子图像探头 | 25~1550 μm | 大云粒子谱、二维图像 |
降水粒子图像探头 | 100~6200 μm | 降水粒子谱、二维图像 |
飞机综合气象要素测量系统 | 温、压、湿、风、GPS轨迹 |
Table 2 Overview of liquid water content data
架次 | 日期 | 整段飞行 | NCDP=NCIP=NPIP=0 | |||||
L1/(g·m-3) | L2/(g·m-3) | L1/(g·m-3) | L1方差 | L2/(g·m-3) | L2方差 | |||
1 | 2015-11-28 | -1.70~1.15 | 0~2.68 | -1.67~0.31 | 0.050 | 0~1.65 | 1.600 | |
2 | 2015-12-01(白天) | -0.30~0.60 | -0.28~1.26 | -0.29~0.27 | 0.009 | -0.28~1.25 | 0.040 | |
3 | 2015-12-01(夜间) | -1.86~0.88 | 0~2.21 | -1.86~0.23 | 0.065 | 0~1.47 | 1.380 | |
4 | 2015-12-10 | -2.12~2.99 | 0~5.31 | -0.48~0.16 | 0.038 | 0~1.54 | 1.000 | |
5 | 2015-12-12 | -1.57~31.52 | -0.90~2.64 | -1.57~31.52 | 1.150 | -0.90~1.33 | 0.090 | |
6 | 2015-12-13 | -3.78~40.74 | -11.54~9.11 | -1.41~40.74 | 2.940 | -0.004~6.78 | 0.150 | |
7 | 2015-12-18 | -1.64~44.19 | 0~49.61 | -0.52~1.40 | 0.060 | 0.66~3.27 | 1.000 | |
8 | 2017-10-31 | -2.26~0.04 | -1.54~1.25 | -1.42~-0.22 | 0.080 | -0.64~0.15 | 0.003 | |
9 | 2017-11-27 | -0.81~69.13 | -3.78~1.12 | -0.81~69.13 | 159.580 | -3.78~1.11 | 0.180 | |
10 | 2017-12-01 | -1.15~-0.42 | -0.67~0.85 | -0.99~-0.61 | 0.410 | -0.42~0.85 | 0.010 |
Table 3 Solutions and thresholds for in-cloud determination
方法 | 参考因素 | 入云的判别指标阈值 | 备注 |
1 | 尺度、数浓度 | Ni>0 | Ni为不低于第i档尺度粒子数浓度 |
2 | 数浓度 | NCDP>10 cm-3 | NCDP为CDP探头测得粒子总数浓度 |
3 | 数浓度 | NCDP>0 或NCIP>0 或NPIP>0 |
NCIP为CIP探头测得粒子总数浓度, NPIP为PIP探头测得粒子总数浓度 |
Table 4 Comparisons between probe data and those determined by three solutions for liquid water content in the positive temperature levels
架次 | 探测数据 | 方法1 | 方法2 | 方法3 | |||||||
L2/(g·m-3) | 负值占比/% | 液态水含量/ (g·m-3) | 负值占比/% | 液态水含量/ (g·m-3) | 负值占比/% | 液态水含量/ (g·m-3) | 负值占比/% | ||||
1 | 0~2.68 | 0 | -0.18~0.51 | 2.48 | -0.22~0.49 | 3.64 | -0.13~0.53 | 8.45 | |||
2 | -0.11~1.26 | 5.58 | -0.23~0.95 | 1.43 | -0.93~0.94 | 1.50 | -0.66~0.95 | 13.83 | |||
3 | 0~2.21 | 0 | -0.12~0.36 | 0.50 | -0.25~0.33 | 1.03 | -0.29~3.14 | 19.57 | |||
4 | 0~1.91 | 0 | -0.14~0.29 | 1.09 | -0.16~0.29 | 0.94 | -0.83~5.39 | 15.32 | |||
5 | -0.02~2.64 | 1.91 | -0.28~1.33 | 4.08 | -0.28~1.33 | 4.34 | -2.06~1.53 | 8.27 | |||
6 | -11.54~2.86 | 4.93 | -0.02~0.10 | 0.10 | 0 | 0 | -0.40~0.39 | 14.48 | |||
7 | 0~1.42 | 0 | -0.18~0.07 | 1.97 | 0 | 0 | -0.37~5.21 | 15.27 | |||
8 | -1.78~1.25 | 81.95 | -0.03~1.27 | 0.59 | -0.007~1.27 | 0.32 | -0.03~1.27 | 0.45 | |||
9 | -0.128~1.12 | 10.98 | -0.003~0.17 | 0.36 | 0~0.17 | 0 | -1.15~1.10 | 2.73 | |||
10 | -0.67~0.05 | 37.36 | -0.005~0.01 | 1.35 | 0~0.003 | 0 | -0.21~0.02 | 21.90 |
[1] |
Duan Y, Wu Z H. Monitoring the distribution characteristics of liquid and vapour water content in the atmosphere using ground-based remote sensing. J Appl Meteor Sci, 1999, 10(1): 34-40. http://qikan.camscma.cn/article/id/19990133
|
[2] |
Qi P, Guo X L, Lu G X, et al. Aircraft measurements of a stable stratiform cloud with embedded convection in eastern Taihang Mountain of North China: Characteristics of embedded convection and melting layer structure. Chinese J Atmos Sci, 2019, 43(6): 1365-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906012.htm
|
[3] |
Yang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htm
|
[4] |
Chen W X, Wang J, Liu W. Analysis of the microphysical precipitation mechanism for a cold vortex process. J Appl Meteor Sci, 1999, 10(2): 190-198. http://qikan.camscma.cn/article/id/19990258
|
[5] |
Sun Y W, Dong X B, Li B D, et al. The physical properties and seeding potential analysis of a low trough cold front cloud system at Mountain Taihang based on aircraft observations. Plateau Meteorology, 2019, 38(5): 971-982. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905006.htm
|
[6] |
Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
|
[7] |
Wang W J, Dong X B, Shi L X, et al. Study on vertical microphysical structure of cloud for a multi-layer cloud system. Plateau Meteorology, 2011, 30(5): 1368-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201105024.htm
|
[8] |
Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. J Appl Meteor Sci, 2018, 29(2): 200-216. doi: 10.11898/1001-7313.20180207
|
[9] |
Wang W J, Liu J X, Shi L X, et al. Case analysis of micophysical characterstics of precipitation cloud system in Sichuan Basin. Meteor Mon, 2011, 37(11): 1389-1394. doi: 10.7519/j.issn.1000-0526.2011.11.009
|
[10] |
Zhang D G, Guo X L, Gong D L, et al. The observational results of the clouds microphysical structure based the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteor Sinica, 2011, 69(1): 195-207. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201101017.htm
|
[11] |
Liu P, Yin Y, Chen Q, et al. Numerical simulation of hygroscopic seeding effects on warm convective clouds and rainfall reduction. J Appl Meteor Sci, 2019, 30(2): 211-222. doi: 10.11898/1001-7313.20190208
|
[12] |
Wang L J, Yin Y, Yao Z Y, et al. Microphysical responses as seen in a stratocumulus aircraft seeding experiment in autumn over the Sanjiangyun National Nature Reserve. Acta Meteor Sinica, 2013, 71(5): 925-939. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305012.htm
|
[13] |
Cai Z X, Cai M, Li P R, et al. Aircraft observation research on macro and microphysics characteristics of continental cumulus cloud at different development stages. Chinese J Atmos Sci, 2019, 43(6): 1191-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906001.htm
|
[14] |
Qi C, Jin C X, Guo W L, et al. Icing potential index of aircraft icing based on fuzzy logic. J Appl Meteor Sci, 2019, 30(5): 619-628. doi: 10.11898/1001-7313.20190510
|
[15] |
Gultepe I, Isaac G A, Leaitch W R, et al. Parameterization of marine stratus microphysics based on in situ observations: Implications for GCMs. J Climate, 1996, 9: 345-357. http://www.researchgate.net/profile/Ismail_Gultepe/publication/255252684_parameterizations_of_Marine_Stratus_Microphysics_Based_on_In_Situ_Observations_Implications_for_GCMS/links/565478d808aefe619b19e8f1.pdf
|
[16] |
Gultepe I, Isaac G A. Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart J Roy Meteor Soc, 2004, 130(602): 2377-2390. http://www.researchgate.net/profile/Ismail_Gultepe/publication/229737863_Aircraft_observations_of_cloud_droplet_number_concentration_Implications_for_climate_studies/links/543b6d990cf204cab1dafddd
|
[17] |
Zhang Q, Quan J N, Tie X X, et al. Impact of aerosol particles on cloud formation: Aircraft measurements in China. Atmospheric Environment, 2011, 45(3): 665-672. http://www.researchgate.net/profile/Jiannong_Quan/publication/241112880_Impact_of_aerosol_particles_on_cloud_formation_Aircraft_measurements_in_China/links/5555a34a08ae6943a871cf61.pdf
|
[18] |
Wang B Z, Liu W G, Wang G H, et al. Principles of KLWC-5 liquid water content guage and its application in cloud seeding. Meteorological Science and Technology, 2004, 32(4): 294-296. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200404022.htm
|
[19] |
Huang M S, Lei H C, Jin L. Pseudo particle identification in the image data from the airborne cloud and precipitation particle image probe. Chinese J Atmos Sci, 2017, 41(5): 1113-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201705016.htm
|
[20] |
Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[21] |
Guo X L, Yu Z P, Yang Z H, et al. Development and application of the high-performance airborne cloud particle imager. Acta Meteor Sinica, 2020, 78(6): 1050-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006013.htm
|
[22] |
Li H Y, Zhou X, Zhang R, et al. Comparison and analysis of several meteorological elements and flight parameters observed from different airborne detection instruments. Meteor Mon, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm
|
[23] |
Li Y Y, Sun H P, Yang J M, et al. Characteristics of aerosol and cloud in summer in the central plain of North China. J Appl Meteor Sci, 2021, 32(6): 665-676. doi: 10.11898/1001-7313.20210603
|
[24] |
Cai Z X, Cai M, Li P R, et al. An in-situ case study on micro physical properties of aerosol and shallow cumulus clouds in North China. Chinese J Atmos Sci, 2021, 45(2): 393-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202102011.htm
|
[25] |
Zhang Z G, Lu G X, Tang D Z, et al. Microphysical characteristics of stratiform clouds in autumn in Guangxi. Meteorological Science and Technology, 2018, 46(3): 545-555. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201803019.htm
|
[26] |
Sun H P, Li P R, Yan S M, et al. Characteristics of cloud microphysical structure based on aircraft data in 2008-2010 in Shanxi Province. Meteorological Science and Technology, 2014, 42(4): 682-689. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201404028.htm
|
[27] |
Duan J, Lou X F, Chen Y, et al. Aircraft measurements of aerosol vertical distributions and its activation efficiency over the Pearl River Delta. J Appl Meteor Sci, 2019, 30(6): 677-689. doi: 10.11898/1001-7313.20190604
|
[28] |
Li Y Y, Yang J M, Li P R, et al. Detection analysis of microphysical structure of stratiform cloud in Shanxi Province. Climatic and Environmental Research, 2012, 17(6): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206007.htm
|
[29] |
Liu X L, Liu D S, Guo L J, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. doi: 10.11898/1001-7313.20190609
|
[30] |
Rangno A L, Hobbs P V. Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart J Roy Meteor Soc, 2005, 131: 639-673. http://www.onacademic.com/detail/journal_1000034849616510_8817.html
|