Liu Xiaolu, Zhang Yuan, Liu Dongsheng. Calibration for data observed by airborne hot-wire liquid water content sensor. J Appl Meteor Sci, 2021, 32(6): 748-758. DOI:  10.11898/1001-7313.20210609.
Citation: Liu Xiaolu, Zhang Yuan, Liu Dongsheng. Calibration for data observed by airborne hot-wire liquid water content sensor. J Appl Meteor Sci, 2021, 32(6): 748-758. DOI:  10.11898/1001-7313.20210609.

Calibration for Data Observed by Airborne Hot-wire Liquid Water Content Sensor

DOI: 10.11898/1001-7313.20210609
  • Received Date: 2021-09-07
  • Rev Recd Date: 2021-10-27
  • Publish Date: 2021-11-23
  • Based on the cloud microphysical detection data of 10-sortie aircraft over southern Sichuan Basin in 2015 and 2017, the liquid water content measured by DMT (Droplet Measurement Technologies) hot-wire liquid water content sensor is examined, and abnormal values in maximum, minimum and negative values are found.There are 4 possible causes for the abnormal maximum, minimum and negative values of liquid water content. First, the errors are caused by multiple parameters such as temperature, air pressure and vacuum velocity, which may lead to the error superposition of calculated values. Second, the on-board operators didn't calibrate the zero before entering the cloud. Third, the on-board operators only calibrate the zero once before entering the cloud during the whole flight. Fourth, the interval between cloud entry and exit is too short, so that the manual zero calibration is inaccurate.Using cloud particle spectrum data from cloud droplet probe (CDP), cloud imaging probe (CIP) and precipitation imaging probe (PIP), three solutions are proposed for calibrating hot-wire liquid water content sensor. Solution 1 is to set the criteria for entering cloud as the concentration of particle above a certain size from CDP probe greater than 0. Solution 2 is to set the criteria for entering cloud as the number concentration of cloud particles greater than 10 cm-3 from CDP probe. Solution 3 is to set the criteria for entering cloud as the number concentration from CDP, CIP and PIP probe greater than 0. The results show that when the number concentration is 0 from CDP, CIP and PIP probe, the original non-zero liquid water content problems are corrected by these solutions.To avoid the influence of ice phase particles on CDP number concentration, the verification is carried out in the positive temperature zone. All the test results show that the negative proportion of liquid water content is also significantly reduced compared with the original data. Solution 1 reduces the negative proportion of liquid water content, and make the minimum and maximum more reasonable than other scales. The liquid water content measured by Solution 1 are more reasonable than Solution 2 and 3.
  • Fig. 1  Negative value proportion(a), minimum(b) and maximum(c) values of liquid water content determined by Solution 1 in positive temperature levels

    Fig. 2  Flight track and position projection of ground- based microwave radiometer on 1 Dec 2015 aircraft and ground-based microwave radiometer

    Fig. 3  Factors of time series from flight detection on 1 Dec 2015 (a)flight altitude and temperature, (b)particles number concentration, (c)liquid water content, (d)horizontal distance between aircraft and groud-based microwave radiometer

    Fig. 4  Time series of liquid water content within 20 km of horizontal distance between aircraft and ground-based microwave radiometer from flight on 1 Dec 2015

    Table  1  Airborne cloud microphysical detection system

    设备类型 测量范围 探测要素
    热线含水量仪 0~3 g·m-3 液态水含量
    云粒子探头 2~50 μm 小云粒子谱
    云粒子图像探头 25~1550 μm 大云粒子谱、二维图像
    降水粒子图像探头 100~6200 μm 降水粒子谱、二维图像
    飞机综合气象要素测量系统 温、压、湿、风、GPS轨迹
    DownLoad: Download CSV

    Table  2  Overview of liquid water content data

    架次 日期 整段飞行 NCDP=NCIP=NPIP=0
    L1/(g·m-3) L2/(g·m-3) L1/(g·m-3) L1方差 L2/(g·m-3) L2方差
    1 2015-11-28 -1.70~1.15 0~2.68 -1.67~0.31 0.050 0~1.65 1.600
    2 2015-12-01(白天) -0.30~0.60 -0.28~1.26 -0.29~0.27 0.009 -0.28~1.25 0.040
    3 2015-12-01(夜间) -1.86~0.88 0~2.21 -1.86~0.23 0.065 0~1.47 1.380
    4 2015-12-10 -2.12~2.99 0~5.31 -0.48~0.16 0.038 0~1.54 1.000
    5 2015-12-12 -1.57~31.52 -0.90~2.64 -1.57~31.52 1.150 -0.90~1.33 0.090
    6 2015-12-13 -3.78~40.74 -11.54~9.11 -1.41~40.74 2.940 -0.004~6.78 0.150
    7 2015-12-18 -1.64~44.19 0~49.61 -0.52~1.40 0.060 0.66~3.27 1.000
    8 2017-10-31 -2.26~0.04 -1.54~1.25 -1.42~-0.22 0.080 -0.64~0.15 0.003
    9 2017-11-27 -0.81~69.13 -3.78~1.12 -0.81~69.13 159.580 -3.78~1.11 0.180
    10 2017-12-01 -1.15~-0.42 -0.67~0.85 -0.99~-0.61 0.410 -0.42~0.85 0.010
    DownLoad: Download CSV

    Table  3  Solutions and thresholds for in-cloud determination

    方法 参考因素 入云的判别指标阈值 备注
    1 尺度、数浓度 Ni>0 Ni为不低于第i档尺度粒子数浓度
    2 数浓度 NCDP>10 cm-3 NCDP为CDP探头测得粒子总数浓度
    3 数浓度 NCDP>0
    NCIP>0
    NPIP>0
    NCIP为CIP探头测得粒子总数浓度,
    NPIP为PIP探头测得粒子总数浓度
    DownLoad: Download CSV

    Table  4  Comparisons between probe data and those determined by three solutions for liquid water content in the positive temperature levels

    架次 探测数据 方法1 方法2 方法3
    L2/(g·m-3) 负值占比/% 液态水含量/ (g·m-3) 负值占比/% 液态水含量/ (g·m-3) 负值占比/% 液态水含量/ (g·m-3) 负值占比/%
    1 0~2.68 0 -0.18~0.51 2.48 -0.22~0.49 3.64 -0.13~0.53 8.45
    2 -0.11~1.26 5.58 -0.23~0.95 1.43 -0.93~0.94 1.50 -0.66~0.95 13.83
    3 0~2.21 0 -0.12~0.36 0.50 -0.25~0.33 1.03 -0.29~3.14 19.57
    4 0~1.91 0 -0.14~0.29 1.09 -0.16~0.29 0.94 -0.83~5.39 15.32
    5 -0.02~2.64 1.91 -0.28~1.33 4.08 -0.28~1.33 4.34 -2.06~1.53 8.27
    6 -11.54~2.86 4.93 -0.02~0.10 0.10 0 0 -0.40~0.39 14.48
    7 0~1.42 0 -0.18~0.07 1.97 0 0 -0.37~5.21 15.27
    8 -1.78~1.25 81.95 -0.03~1.27 0.59 -0.007~1.27 0.32 -0.03~1.27 0.45
    9 -0.128~1.12 10.98 -0.003~0.17 0.36 0~0.17 0 -1.15~1.10 2.73
    10 -0.67~0.05 37.36 -0.005~0.01 1.35 0~0.003 0 -0.21~0.02 21.90
    DownLoad: Download CSV
  • [1]
    Duan Y, Wu Z H. Monitoring the distribution characteristics of liquid and vapour water content in the atmosphere using ground-based remote sensing. J Appl Meteor Sci, 1999, 10(1): 34-40. http://qikan.camscma.cn/article/id/19990133
    [2]
    Qi P, Guo X L, Lu G X, et al. Aircraft measurements of a stable stratiform cloud with embedded convection in eastern Taihang Mountain of North China: Characteristics of embedded convection and melting layer structure. Chinese J Atmos Sci, 2019, 43(6): 1365-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906012.htm
    [3]
    Yang J F, Hu X F, Lei H C, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains. Chinese J Atmos Sci, 2021, 45(1): 88-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101006.htm
    [4]
    Chen W X, Wang J, Liu W. Analysis of the microphysical precipitation mechanism for a cold vortex process. J Appl Meteor Sci, 1999, 10(2): 190-198. http://qikan.camscma.cn/article/id/19990258
    [5]
    Sun Y W, Dong X B, Li B D, et al. The physical properties and seeding potential analysis of a low trough cold front cloud system at Mountain Taihang based on aircraft observations. Plateau Meteorology, 2019, 38(5): 971-982. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201905006.htm
    [6]
    Li J X, Li P R, Tao Y, et al. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province. J Appl Meteor Sci, 2014, 25(1): 22-32. http://qikan.camscma.cn/article/id/20140103
    [7]
    Wang W J, Dong X B, Shi L X, et al. Study on vertical microphysical structure of cloud for a multi-layer cloud system. Plateau Meteorology, 2011, 30(5): 1368-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201105024.htm
    [8]
    Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. J Appl Meteor Sci, 2018, 29(2): 200-216. doi:  10.11898/1001-7313.20180207
    [9]
    Wang W J, Liu J X, Shi L X, et al. Case analysis of micophysical characterstics of precipitation cloud system in Sichuan Basin. Meteor Mon, 2011, 37(11): 1389-1394. doi:  10.7519/j.issn.1000-0526.2011.11.009
    [10]
    Zhang D G, Guo X L, Gong D L, et al. The observational results of the clouds microphysical structure based the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteor Sinica, 2011, 69(1): 195-207. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201101017.htm
    [11]
    Liu P, Yin Y, Chen Q, et al. Numerical simulation of hygroscopic seeding effects on warm convective clouds and rainfall reduction. J Appl Meteor Sci, 2019, 30(2): 211-222. doi:  10.11898/1001-7313.20190208
    [12]
    Wang L J, Yin Y, Yao Z Y, et al. Microphysical responses as seen in a stratocumulus aircraft seeding experiment in autumn over the Sanjiangyun National Nature Reserve. Acta Meteor Sinica, 2013, 71(5): 925-939. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305012.htm
    [13]
    Cai Z X, Cai M, Li P R, et al. Aircraft observation research on macro and microphysics characteristics of continental cumulus cloud at different development stages. Chinese J Atmos Sci, 2019, 43(6): 1191-1203. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201906001.htm
    [14]
    Qi C, Jin C X, Guo W L, et al. Icing potential index of aircraft icing based on fuzzy logic. J Appl Meteor Sci, 2019, 30(5): 619-628. doi:  10.11898/1001-7313.20190510
    [15]
    Gultepe I, Isaac G A, Leaitch W R, et al. Parameterization of marine stratus microphysics based on in situ observations: Implications for GCMs. J Climate, 1996, 9: 345-357. http://www.researchgate.net/profile/Ismail_Gultepe/publication/255252684_parameterizations_of_Marine_Stratus_Microphysics_Based_on_In_Situ_Observations_Implications_for_GCMS/links/565478d808aefe619b19e8f1.pdf
    [16]
    Gultepe I, Isaac G A. Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart J Roy Meteor Soc, 2004, 130(602): 2377-2390. http://www.researchgate.net/profile/Ismail_Gultepe/publication/229737863_Aircraft_observations_of_cloud_droplet_number_concentration_Implications_for_climate_studies/links/543b6d990cf204cab1dafddd
    [17]
    Zhang Q, Quan J N, Tie X X, et al. Impact of aerosol particles on cloud formation: Aircraft measurements in China. Atmospheric Environment, 2011, 45(3): 665-672. http://www.researchgate.net/profile/Jiannong_Quan/publication/241112880_Impact_of_aerosol_particles_on_cloud_formation_Aircraft_measurements_in_China/links/5555a34a08ae6943a871cf61.pdf
    [18]
    Wang B Z, Liu W G, Wang G H, et al. Principles of KLWC-5 liquid water content guage and its application in cloud seeding. Meteorological Science and Technology, 2004, 32(4): 294-296. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200404022.htm
    [19]
    Huang M S, Lei H C, Jin L. Pseudo particle identification in the image data from the airborne cloud and precipitation particle image probe. Chinese J Atmos Sci, 2017, 41(5): 1113-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201705016.htm
    [20]
    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [21]
    Guo X L, Yu Z P, Yang Z H, et al. Development and application of the high-performance airborne cloud particle imager. Acta Meteor Sinica, 2020, 78(6): 1050-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202006013.htm
    [22]
    Li H Y, Zhou X, Zhang R, et al. Comparison and analysis of several meteorological elements and flight parameters observed from different airborne detection instruments. Meteor Mon, 2020, 46(9): 1143-1152. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202009002.htm
    [23]
    Li Y Y, Sun H P, Yang J M, et al. Characteristics of aerosol and cloud in summer in the central plain of North China. J Appl Meteor Sci, 2021, 32(6): 665-676. doi:  10.11898/1001-7313.20210603
    [24]
    Cai Z X, Cai M, Li P R, et al. An in-situ case study on micro physical properties of aerosol and shallow cumulus clouds in North China. Chinese J Atmos Sci, 2021, 45(2): 393-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202102011.htm
    [25]
    Zhang Z G, Lu G X, Tang D Z, et al. Microphysical characteristics of stratiform clouds in autumn in Guangxi. Meteorological Science and Technology, 2018, 46(3): 545-555. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201803019.htm
    [26]
    Sun H P, Li P R, Yan S M, et al. Characteristics of cloud microphysical structure based on aircraft data in 2008-2010 in Shanxi Province. Meteorological Science and Technology, 2014, 42(4): 682-689. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201404028.htm
    [27]
    Duan J, Lou X F, Chen Y, et al. Aircraft measurements of aerosol vertical distributions and its activation efficiency over the Pearl River Delta. J Appl Meteor Sci, 2019, 30(6): 677-689. doi:  10.11898/1001-7313.20190604
    [28]
    Li Y Y, Yang J M, Li P R, et al. Detection analysis of microphysical structure of stratiform cloud in Shanxi Province. Climatic and Environmental Research, 2012, 17(6): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206007.htm
    [29]
    Liu X L, Liu D S, Guo L J, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. doi:  10.11898/1001-7313.20190609
    [30]
    Rangno A L, Hobbs P V. Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart J Roy Meteor Soc, 2005, 131: 639-673. http://www.onacademic.com/detail/journal_1000034849616510_8817.html
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(4)

    Article views (1128) PDF downloads(122) Cited by()
    • Received : 2021-09-07
    • Accepted : 2021-10-27
    • Published : 2021-11-23

    /

    DownLoad:  Full-Size Img  PowerPoint