Li Zhe, Wu Chong, Liu Liping, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. DOI:  10.11898/1001-7313.20220102.
Citation: Li Zhe, Wu Chong, Liu Liping, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. DOI:  10.11898/1001-7313.20220102.

Error Evaluation and Hydrometeor Classification Method of Dual Polarization Phased Array Radar

DOI: 10.11898/1001-7313.20220102
  • Received Date: 2021-09-15
  • Rev Recd Date: 2021-11-16
  • Publish Date: 2022-01-19
  • Phased array radar is faster in scanning speed than mechanical scanning radar, but due to the influence of antenna structure and attenuation, phased array radar will produce larger system error and random error. The mainstream fuzzy logic hydrometeor classification method has little difference in the weight coefficients of each parameter, and the calculated composite values are often close, so the hydrometeor classification results are easily affected by data errors. The detection data of the X-band dual polarization phased array radar at Qiuyutan, Shenzhen, from March to September in 2020 are compared with the S-band dual polarization radar at the same location. The points close to the elevation, azimuth and radial distance of the two radars are obtained to establish matching datasets to calculate the errors of X-band dual-polarization phased array radar. Quantitative analysis of the causes for the introduction of errors through certain restriction conditions reveals that the calibration error and random error of the reflectance factor ZH and the differential reflectance ZDR are relatively large. The error range of ZH is -0.5-4.5 dB, and the error of ZDR is -0.7-0.2 dB. After the preliminary correction of calibration error and random error, it is found that there are still some errors in data, which make the hydrometeor classification result of fuzzy logic method unreliable, so the decision tree hydrometeor classification method with the basic structure of binary tree is established according to the characteristic range of radar parameters of different hydrometeors and the height of the melting layer. In order to verify the practical application effects of the above methods, the error sensitivity of hydrometeor classification results and the rationality of hydrometeor spatial distribution are evaluated respectively. Typical examples are selected to further evaluate the rationality of the decision tree hydrometeor classification method by comparing the parameters and hydrometeor classification results of X-band dual polarization phased array radar and S-band dual polarization radar. The evaluation results show that the stability of the decision tree hydrometeor classification method is higher than that of the fuzzy logic method, and the hydrometeor distribution in the convective cloud is more reasonable, which can give full play to the advantage of X-band dual polarization phased array radar in studying the phase evolution of particles in the cloud.
  • Fig. 1  Flow chart of DHC method

    Fig. 2  The horizontal structure of ZH and ZDR of X-PAR and S-POL at 1030 BT 18 Mar 2020

    (the distance between adjacent circles is 15 km, + denotes the location of radar)

    Fig. 3  ZH and ZDR random error comparison frequency and error magnitude ratio of X-PAR

    Fig. 4  ZH and ZDR calibration error comparison frequency and error magnitude ratio of X-PAR

    Fig. 5  ZH and ZDR attenuation correction error frequency and error magnitude ratio of X-PAR

    Fig. 6  ZH and ZDR beam broadening error frequency and error magnitude ratio of X-PAR

    Fig. 7  Phase change rate after introducing system error and random error to ZH

    Fig. 8  The horizontal structure of ZH, ρhv and ZDR of X-PAR and S-POL at 0937 BT 18 Mar 2020 (the elevation: 6.3°)

    Fig. 9  Hydrometeor classification results of DHC method and FHC method in X-PAR and S-POL at 0937 BT 18 Mar 2020

    (the elevation: 6.3°)

    Fig. 10  The horizontal structure of ZH, ρhv and ZDR of X-PAR and S-POL at 2300 BT 11 May 2020

    (the elevation: 6.3°, the distance between adjacent circles is 15 km, + deontes the location of radar)

    Fig. 11  Hydrometeor classification results of DHC method and FHC method in X-PAR and S-POL at 2300 BT 11 May 2020

    (the elevation: 6.3°, the distance between adjacent circles is 15 km, + deontes the location of radar)

    Table  1  Limiting conditions for different errors of X-PAR

    误差种类 表征误差的变量 限制条件
    数据处理 距离 ΦDP 其他限制
    标定误差 时间 滤波 20~30 km ≤5° 仰角(X-PAR: 4.5°,S-POL: 4.3°)
    仰角 滤波 20~30 km ≤5° 去除标定随时间的误差
    衰减订正误差 ΦDP 滤波 25~30 km ≥5° 仰角(X-PAR: 4.5°, S-POL: 4.3°), 去除标定随时间的误差
    波束展宽误差 距离 滤波 所有距离 ≤5° 仰角(X-PAR: 4.5°, S-POL: 4.3°), 去除标定随时间的误差
    随机误差 ZH标准差、ZDR标准差 未滤波 20~30 km ≤5° 仰角(X-PAR: 4.5°, S-POL: 4.3°), 去除标定随时间的误差
    DownLoad: Download CSV
  • [1]
    Zhang G Y. Principles of Phased array Radar. Beijing: National Defense Industry Press, 2009: 13-21.
    [2]
    Wu C, Liu L P, Wang X D, et al. The measurement influence of reflectivity factor caused by scanning mode from phased array radar. J Appl Meteor Sci, 2014, 25(4): 406-414. doi:  10.3969/j.issn.1001-7313.2014.04.003
    [3]
    Ma S Q, Chen H B, Wang G R, et al. Design and initial implementation of array weather radar. J Appl Meteor Sci, 2019, 30(1): 1-12. doi:  10.11898/1001-7313.20190101
    [4]
    Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi:  10.11898/1001-7313.20210206
    [5]
    Liu L P, Wu L L, Wu C, et al. Field experiment on convective precipitation by X-Band phased-array radar and preliminary results. Chinese J Atmos Sci, 2014, 38(6): 1079-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201406006.htm
    [6]
    Liu J, Huang X Y, He Y Q, et al. Comparative analysis of X-Band phased array antenna weather radar measurements. Plateau Meteorology, 2015, 34(4): 1167-1176. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201504028.htm
    [7]
    Liu L P, Wu C, Wang X D, et al. Test and calibration methods for X-band active phased-array weather radar. J Appl Meteor Sci, 2015, 26(2): 129-140. doi:  10.11898/1001-7313.20150201
    [8]
    Ryzhkov A V, Schuur T J, Burgess D W, et al. The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull Amer Meteor Soc, 2005, 86(6): 809-824. doi:  10.1175/BAMS-86-6-809
    [9]
    Park S G, Bringi V N, Chandrasekar V, et al. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J Atmos Oceanic Technol, 2005, 22(11): 1621-1632. doi:  10.1175/JTECH1803.1
    [10]
    Yang J H, Gao Y C, Cheng M H, et al. Beam characteristics analysis on phased array weather radar. J Appl Meteor Sci, 2009, 20(1): 119-123. doi:  10.3969/j.issn.1001-7313.2009.01.016
    [11]
    Zhang W R, Wu C, Liu L P, et al. Research on quantitative comparison and observation precision of dual polarization phased array radar and operational radar. Plateau Meteorology, 2021, 40(2): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX202102019.htm
    [12]
    Zadeh L A. Fuzzy algorithms. Information & Control, 1968, 12(2): 94-102.
    [13]
    Straka M J, Zrnic D S. An Algorithm to Deduce Hydrometeor Types and Contents from Multiparameter Radar Data//26th Conference on Radar Meteorology, 1993: 513-515.
    [14]
    Zrnic D S, Ryzhkov A, Straka J, et al. Testing a procedure for automatic classification of hydrometeor types. J Atmos Oceanic Technol, 2001, 18(6): 892-913. doi:  10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2
    [15]
    Cao J W, Liu L P, Ge R S. A Study of fuzzy logic method in classification of hydrometeors based on polarimetric radar measurement. Chinese J Atmos Sci, 2005, 29(5): 827-836. doi:  10.3878/j.issn.1006-9895.2005.05.15
    [16]
    Park H S, Ryzhkov A V, Zrnic D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748.
    [17]
    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarization radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [18]
    Hunt E B, Marin J, Stone P J. Experiments in Induction. New York: Academic Press, 1966.
    [19]
    Fu P L, Hu D M, Huang H, et al. Observation of a tornado event in outside-region of Typhoon Mangkhut by X-band polarimetric phased array radar in 2018. J Appl Meteor Sci, 2020, 31(6): 706-718. doi:  10.11898/1001-7313.20200606
    [20]
    Wang H, Kong F Y, Jung Y S, et al. Quality control of S-band polarimetric radar measurements for data assimilation. J Appl Meteor Sci, 2018, 29(5): 546-558. doi:  10.11898/1001-7313.20180504
    [21]
    Cai Q M, Xu B X, Liu L P. A study of the relation between raininess, extinction of rain cloud and parameters measured by a dual linear polarization radar. Plateau Meteorology, 1990, 9(4): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199004000.htm
    [22]
    Giangrande S E, Krause J M, Ryzhkov A V. Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J Appl Meteor Climatol, 2008, 47(5): 1354-1364. doi:  10.1175/2007JAMC1634.1
    [23]
    Xiao Y J, Liu L P. Identification of stratiform and convective cloud using 3D radar reflectivity data. Chinese J Atmos Sci, 2007, 31(4): 645-654. doi:  10.3878/j.issn.1006-9895.2007.04.09
    [24]
    Ding Q L, Liu L P, Ge R S, et al. Theoretical analysis of measurement accuracy of dual linear polarization Doppler radar. J Appl Meteor Sci, 2003, 14(1): 30-38. doi:  10.3969/j.issn.1001-7313.2003.01.004
    [25]
    Zhu S C, Yuan Y, Wu Y, et al. Statistical characteristics of isolated convection in the Jianghuai Region. J Appl Meteor Sci, 2019, 30(6): 690-699. doi:  10.11898/1001-7313.20190605
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (1427) PDF downloads(294) Cited by()
    • Received : 2021-09-15
    • Accepted : 2021-11-16
    • Published : 2022-01-19

    /

    DownLoad:  Full-Size Img  PowerPoint