Li Xin, Zhang Lu. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. DOI:  10.11898/1001-7313.20220103.
Citation: Li Xin, Zhang Lu. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. DOI:  10.11898/1001-7313.20220103.

Formation Mechanism and Microphysics Characteristics of Heavy Rainfall Caused by Northward-moving Typhoons

DOI: 10.11898/1001-7313.20220103
  • Received Date: 2021-08-08
  • Rev Recd Date: 2021-11-17
  • Publish Date: 2022-01-19
  • Local torrential rain and short-term heavy rainfall of small spatial-temporal scale are caused by northward-moving Typhoon Lekima (1909) and Typhoon Bavi (2008) in Qingdao area, with the maximum hourly rainfall of 60.3 mm·h-1 and 130.1 mm·h-1, respectively, while the prediction performance of numerical weather prediction model is very poor. Using NCEP FNL analysis data, raindrop spectrum and polarimetric radar data, the microphysics characteristics of the heavy rainfall are analyzed. The rainfall mainly occurs in a narrow belt region extending northwestward from the coastal mountainous area. The warm and humid air is transported by the southeast wind strengthens the instability. Convective cells are constantly triggered by topography or boundary layer front, and then move northwestward and form linear multicell storms under strong wind condition, or merges into local strong storms when the wind is weak. Both can cause local heavy rainfall. The mass weighted average diameter (Dm) and logarithmic normalized intercept (lgNw) are 1.89 mm and 3.86, respectively, which are between tropical marine-time and continental convective precipitation, indicating a larger mean diameter and lower number concentration compared to the typhoon rainfall in East China and South China. The μ-Λ slope is also significantly different, indicating the dominant microphysical processes are different. With the increase of rainfall intensity, the proportion of small particles below 1 mm decreases significantly, and the proportion of medium-large particles increases, indicating significant collision-coalescence process. Particles with 1-4 mm diameters contribute more than 90% to short-term heavy rainfall. When hourly rainfall is more than 50 mm·h-1, the proportion of small particles increases and particles with 2-3 mm diameter changes little, indicating that breakup and collision-coalescence process reaches equilibrium. Aggregate process and dry snow is dominant above -20℃ level and grapuel produced by riming process is dominant between -10℃ and 0℃ level. With the decrease of height, the values of ZH, ZDR and KDP increase, and raindrops change from light rain to heavy rain particles. At the same time, the liquid water content is significantly greater than ice water content, indicating that the collision-coalescence and accretion process play a critical role in the formation of heavy rainfall. Riming process also plays an important role in extreme heavy rainfall, during which its height can reach near -20℃ layer. The positive feedback of latent heat release leads to the strengthening of convective activity, resulting in more graupel particles and greater ice water content. The melting of graupel directly increases the rainfall. On the other hand, it produces big droplets, which enhance the warm-rain processes and leads to the increase of rainfall intensity.
  • Fig. 1  The typhoon track, terrain height and precipitation distribution   (a)the tracks of Typhoon Lekima and Typhoon Bavi from China Meteorological Administrator (the box denotes the range in next 3 panels), (b)terrain height of Qingdao (the shaded), location of Qingdao S-band polarimetric radar (SPOL) and precipitation phenomenon instrument(PPI) (black circles denote radius of 50 km, 100 km and 150 km), (c)accumulated precipitation of automatic rain gauges (colorful dots) from 0000 BT to 1600 BT on 11 Aug 2019 (the box denotes the station with maximum hourly precipitation), (d)accumulated precipitation of automatic rain gauges from 0200 BT to 1800 BT on 26 Aug 2020 (the same as in Fig. 1c)

    Fig. 2  Cross-section of horizontal wind (the barb) and pseudo-equivalent potential temperature (the shaded) and vertical velocity (the contour, unit: Pa·s-1) along 36°N at 0200 BT on 11 Aug 2019(a) and 0800 BT on 26 Aug 2020(b)

    (the triangle denotes the longitude of station with maximum hourly precipitation)

    Fig. 3  Composite reflectivity factor during main precipitation stage

    (the shaded, echoes below 30 dBZ are not shown; the box denotes the region of microphysics analysis)

    Fig. 4  Raindrop characteristics based on the PPI observation   (a)scatterplot of Dm-lgNw for Typhoon Lekima and Typhoon Bavi (the averaged Dm-lgNw pairs for convective rain of different cases are given by corresponding shape, orange diamond represents average value of Lekima and Bavi, the solid(dashed) rectangle corresponds to the maritime (continental) convective cluster, the gray dashed line indicates the rainfall rate of 10 mm·h-1) (b)scatterplot of μ-Λ for Lekima and Bavi (the black solid line is the relation derived from black scatter points(R1h>5 mm·h-1), colorful dashed lines are for different cases), (c)the contribution of raindrops in different size to Nt in different rain rate, (d)the same as in Fig. 1c, but for rainfall(R)

    Fig. 5  Vertical probability distributions (the shaded) and average profiles (the black solid line) of ZH, ZDR, KDP in the convective area (the box in Fig. 3) of Typhoon Lekima and Typhoon Bavi

    Fig. 6  Frequency of each hydrometer class changing with height in the convective area (the box in Fig. 3) of Typhoon Lekima and Typhoon Bavi

    Fig. 7  Dominant hydrometeor class profile and average profiles of ice water content and liquid water content in the convective area (the box in Fig. 3) of Typhoon Lekima

    (from 0300 BT to 1300 BT on 11 Aug 2019) and Typhoon Bavi (from 0800 BT to 1500 BT on 26 Aug 2020)

  • [1]
    Chen L S. The analysis of severe torrential rainfall in landing typhoon. Meteor Mon, 1977, 3(11): 10-12. doi:  10.7519/j.issn.1000-0526.1977.11.007
    [2]
    Lin Y, Liu M, Liu A M, et al. Causation analysis of mesoscale heavy rain triggered by Typhoon "Longwang". Meteor Mon, 2007, 33(2): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200702003.htm
    [3]
    Chen Y, Su H L, Shou S W, et al. Numerical simulation and diagnosis analysis on heavy rain in east Hebei by Typhoon Matsa. J Appl Meteor Sci, 2008, 19(2): 209-218. doi:  10.3969/j.issn.1001-7313.2008.02.011
    [4]
    An C, Yuan J N, Meng W G, et al. An analysis of distribution and mesoscale structure of precipitation about landfalling tropical cyclone No. 0915-"Koppu". J Trop Meteor, 2013, 29(5): 727-736. doi:  10.3969/j.issn.1004-4965.2013.05.003
    [5]
    Cao X G, Wang H. Analysis on a tropical cyclone remote rain event in Shanghai in 23-24 August 2015. Meteor Mon, 2016, 42(10): 1184-1210. doi:  10.7519/j.issn.1000-0526.2016.10.003
    [6]
    Duan J J, Qian Y Z, Zhou F, et al. Numerical simulation of topographic effect on heavy rainfall in northeastern Zhejiang caused by Typhoon Chan-Hom. Meteor Mon, 2017, 43(6): 686-695. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201706005.htm
    [7]
    Lin Y, Chen S X, Lü S S. Mesoscale system characteristics and cause analysis of an excessive rainstorm event triggered by super Typhoon Nepartak. Torr Rain Dis, 2017, 36(6): 542-549. doi:  10.3969/j.issn.1004-9045.2017.06.007
    [8]
    Wang C W, Qi D, Xu Y, et al. Analysis of rainstorm induced by interaction between Typhoon Chan-Hom (2015) and cold air in Northeast China. Plateau Meteor, 2017, 36(5): 1257-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201705010.htm
    [9]
    Cheng Z Q, Lin L X, Yang G J, et al. Rapid intensification and associated large-scale circulation of super Typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. doi:  10.11898/1001-7313.20170306
    [10]
    Yang S N, Duan Y H. Extremity analysis on the precipitation and environmental field of Typhoon Rumbia in 2018. J Appl Meteor Sci, 2020, 31(3): 290-302. doi:  10.11898/1001-7313.20200304
    [11]
    Cong C H, Chen L S, Lei X T, et al. An overview on the study of tropical cyclone remote rainfall. J Trop Meteor, 2011, 27(1): 264-270. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201102016.htm
    [12]
    Chen L S, Meng Z Y, Cong C H. An overview on the research of typhoon rainfall distribution. J Marine Meteor, 2017, 37(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201704001.htm
    [13]
    Liang J, Li Y, Zhang S J, et al. Mesoscale structure of torrential rain tropical cyclone over Liaodong Peninsula and the effect of complicated topography. Plateau Meteor, 2014, 33(4): 1154-1163. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201404029.htm
    [14]
    Liu H Z, Chen D H, Teng Q B. Researches on the influence of parameterization of physical process on modeling typhoon and its dynamical structure. J Appl Meteor Sci, 1998, 9(2): 141-150. http://qikan.camscma.cn/article/id/19980221
    [15]
    Qu Y M, Cai R H, Zhu L J, et al. Application of cloud analysis system to Typhoon Molave simulation. J Appl Meteor Sci, 2012, 23(5): 551-561. doi:  10.3969/j.issn.1001-7313.2012.05.005
    [16]
    Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405
    [17]
    Ulbrich C W, Lee L G. Rainfall characteristics associated with the remnants of tropical storm Helene in upstate South Carolina. Wea Forecasting, 2002, 17(6): 1257-1267. doi:  10.1175/1520-0434(2002)017<1257:RCAWTR>2.0.CO;2
    [18]
    Maeso J, Bringi V N, Cruz-Pol S, et al. DSD Characterization and Computations of Expected Reflectivity Using Data from a Two Dimensional Video Disdrometer Deployed in a Tropical Enviroment Proc Int Geoscience and Remote Sensing Symp, Seoul, South Korea, IEEE, 2005: 5073-5076.
    [19]
    Tokay A, Bashor P G, Habib E, et al. Raindrop size distribution measurements in tropical cyclones. Mon Wea Rev, 2008, 136: 1669-1685. doi:  10.1175/2007MWR2122.1
    [20]
    Wang M J, Zhao K, Xue M, et al. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J Geophys Res Atmos, 2016, 121: 12415-12433. doi:  10.1002/2016JD025307
    [21]
    Wen L, Zhao K, Chen G, et al. Drop size distribution characteristics of seven typhoons in China. J Geophys Res Atmos, 2018, 123: 6529-6548. doi:  10.1029/2017JD027950
    [22]
    Bao X W, Wu L G, Tang B, et al. Variable raindrop size distributions in different rainbands associated with Typhoon Fitow(2013). J Geophys Res Atmos, 2019, 124: 12262-12281. doi:  10.1029/2019JD030268
    [23]
    Bao X W, Wu L G, Zhang S, et al. Distinct raindrop size distributions of convective inner- and outer-rainband rain in Typhoon Maria(2018). J Geophys Res Atmos, 2020, 125, e2020JD032482. doi:  10.1029/2020JD032482
    [24]
    Zheng H P, Zhang Y, Zhang L F, et al. Precipitation microphysical processes in the inner rainband of tropical cyclone Kajiki(2019) over the South China Sea revealed by polarimetric radar. Adv Atmos Sci, 2021, 38: 65-80. doi:  10.1007/s00376-020-0179-3
    [25]
    Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60: 354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [26]
    Chang W Y, Wang T C C, Lin P L. Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the Western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J Atmos Oceanic Technol, 2009, 26: 1973-1993. doi:  10.1175/2009JTECHA1236.1
    [27]
    Chen B J, Wang Y, Ming J. Microphysical characteristics of the raindrop size distribution in Typhoon Morakot(2009). J Tropical Meteor, 2012, 18: 162-171. http://www.cnki.com.cn/Article/CJFDTotal-RQXB201202008.htm
    [28]
    Zhu H F, Yang Z X, Wang D Y, et al. Comparative analysis of the rainstorms caused by two typhoons in inland China. Acta Meteor Sinica, 2019, 77(2): 268-281. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201902008.htm
    [29]
    Shen G H, Gao A C, Li J. Analysis of the characteristics of raindrop spectrum in different heavy precipitation centers caused by Typhoon "Lekima". J Meteor Sci, 2020, 40(1): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202001011.htm
    [30]
    Shen G H, Gao A C, Li J. Application of raindrop spectrum and dual polarization radar data to a heavy rain process. Meteor Mon, 2021, 47(6): 737-745. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202106009.htm
    [31]
    Shen J, Chu R Z, Zhao G, et al. Evolution of polarimetric parameters in Typhoon 'Morakot'. Plateau Meteor, 2011, 30(3): 809-816. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201103028.htm
    [32]
    Wang M J, Zhao K, Lee W C, et al. Microphysical and kinematic structure of convective-scale elements in the inner rainband of Typhoon Matmo(2014) after landfall. J Geophys Res Atmos, 2018, 123: 6549-6564.
    [33]
    Wu D, Zhao K, Kumjian M R, et al. Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon Wea Rev, 2018, 146: 2147-2159. doi:  10.1175/MWR-D-17-0320.1
    [34]
    Hu J X, Rosenfeld D, Ryzhkov A, et al. Synergetic use of the WSR-88D radars, GOES-R satellites, and lightning networks to study microphysical characteristics of hurricanes. J Appl Meteor Climatol, 2020, 59: 1051-1068. doi:  10.1175/JAMC-D-19-0122.1
    [35]
    Brandes E A, Zhang G F, Vivekanandan J. Experiments in rainfall estimation with a polarimetric radar in a subtropical enviroment. J Appl Meteor Climatol, 2002, 41: 674-685. doi:  10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2
    [36]
    Kruger A, Krajewski W F. Two-dimensional video disdrometer: A description. J Atmos Oceanic Technol, 2002, 19: 602-617. doi:  10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2
    [37]
    Thurai M, Bringi V N. Drop axis ratios from 2D video disdrometer. J Atmos Oceanic Technol, 2005, 22: 966-978. doi:  10.1175/JTECH1767.1
    [38]
    Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Climate Appl Meteor, 1983, 22: 1764-1775. doi:  10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [39]
    Zhang G F, Vivekanandan J, Brandes E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans Geosci Remote Sens, 2001, 39: 830-841. doi:  10.1109/36.917906
    [40]
    Vivekanandan J, Zhang G F, Brandes E. Polarimetric radar estimators based on a constrained gamma drop size distribution model. J Appl Meteor Climatol, 2004, 43: 217-230. doi:  10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2
    [41]
    Li X, Zhang L. Radar echo characteristics and meso-microscale systems of short-term strong rainfall in Qingdao. Meteor Sci Technol, 2020, 46(3): 387-395. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003013.htm
    [42]
    [43]
    Xu S Y, Wu C, Liu L P. Parameter improvements of hydrometeor classification algorithm for the dual-polarimetric radar. J Appl Meteor Sci, 2020, 31(3): 350-360. doi:  10.11898/1001-7313.20200309
    [44]
    He L F, Chen S, Guo Y Q. Observation characteristics and synoptic mechanisms of Typhoon Lekima extreme rainfall in 2019. J Appl Meteor Sci, 2020, 31(5): 513-526. doi:  10.11898/1001-7313.20200501
    [45]
    Zawadzki I, Fabry F, Szyrmer W. Observations of supercooled water and secondary ice generation by a vertically pointing X-band Doppler radar. Atmos Res, 2001, 59/60: 343-359. doi:  10.1016/S0169-8095(01)00124-7
    [46]
    Rosenfeld D, Ulbrich C W. Cloud microphysical properties, processes, a nd rainfall estimation opportunities. Meteor Monogr, 2003, 30(52): 237-258. doi:  10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2
    [47]
    Chen B J, Yang J, Gao R Q, et al. Vertical variability of the raindrop size distribution in typhoons observed at the Shenzhen 356-m meteorological tower. J Atmos Sci, 2020, 77: 4171-4187. http://www.researchgate.net/publication/346195719_Vertical_Variability_of_the_Raindrop_Size_Distribution_in_Typhoons_Observed_at_the_Shenzhen_356-m_Meteorological_Tower
    [48]
    Lin W, Lin C C, Li B L, et al. Rainfall intensity and raindrop spectrum for different parts in landing Typhoon Matmo. J Appl Meteor Sci, 2016, 27(2): 239-248. doi:  10.11898/1001-7313.20160212
    [49]
    Youter S E, Houze Jr R A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part Ⅱ: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Wea Rev, 1995, 123: 1941-1963.
    [50]
    Steiner M, Houze Jr R A, Youter S E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J Appl Meteor Climatol, 1995, 34: 1978-2007.
    [51]
    DeMott C A, Rutledge S A. The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J Atmos Sci, 1998, 55: 2730-2747.
    [52]
    Kumjian M R, Prat O P. The impact of raindrop collisional processes on the polarimetric radar variables. J Atmos Sci, 2014, 71(8): 3052-3067.
    [53]
    Carey L D, Rutledge S A. The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon Wea Rev, 2000, 128: 2687-2710.
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (1424) PDF downloads(201) Cited by()
    • Received : 2021-08-08
    • Accepted : 2021-11-17
    • Published : 2022-01-19

    /

    DownLoad:  Full-Size Img  PowerPoint