Kong Lisha, Zhang Xiuzhi. Sensitive experiments on reconstruction model of historical typhoon wind field in the Northwest Pacific Ocean. J Appl Meteor Sci, 2022, 33(1): 56-68. DOI:  10.11898/1001-7313.20220105.
Citation: Kong Lisha, Zhang Xiuzhi. Sensitive experiments on reconstruction model of historical typhoon wind field in the Northwest Pacific Ocean. J Appl Meteor Sci, 2022, 33(1): 56-68. DOI:  10.11898/1001-7313.20220105.

Sensitive Experiments on Reconstruction Model of Historical Typhoon Wind Field in the Northwest Pacific Ocean

DOI: 10.11898/1001-7313.20220105
  • Received Date: 2021-05-26
  • Rev Recd Date: 2021-09-18
  • Publish Date: 2022-01-19
  • In order to reconstruct the historical typhoon wind field in the Northwest Pacific Ocean and calculate the maximum wind speed in 50 years of the Northwest Pacific Ocean, Yan Meng wind field model is used to simulate the wind field. There are 3 important parameters for wind field simulation in Yan Meng wind field model: The radius of maximum wind, pressure distribution constant B, and roughness z0. Therefore, it is necessary to test and reasonably optimize the value of the three parameters by measured data of the buoy stations during the typhoon in the Northwest Pacific Ocean.First, based on the JTWC (Joint Typhoon Warning Center) dataset, the relationship between the radius of maximum wind and its impact factors is discussed and four combinations scheme of calculating the radius of maximum wind are proposed, and then the best combination scheme is selected through the measured data. Second, the values of B and z0 are estimated with the observed wind speed of buoy stations during different typhoons. Finally, the simulation effect of the typhoon wind field at sea is evaluated with 19 typhoon processes, and the applicability of the model and estimation scheme of three parameters are verified.The results show that it is more reasonable to find the radius of maximum wind by combination scheme of Vmax (the maximum wind speed of typhoon center) and the latitude of typhoon. In the parameter value test, the wind speed simulation effect of sea surface (buoy stations) is better given z0 being 0.005 m and B being 1.0, according to the absolute deviation between the simulated and the measured maximum wind speed at 10 buoy stations during 6 typhoons. Except for the parameter test, 19 other typhoon processes landing in northern Fujian and Zhejiang, heading north to the East China Sea, moving west to the South China Sea, and crossing Taiwan Island into the Taiwan Strait are selected to test the simulation effect, which illustrates that when the Vmax published by Central Meteorological Observatory is below 40 m·s-1, the simulated Vmax is close to the published Vmax if B is equal to 1.0 and z0 is equal to 0.005 m, and the simulated wind speed in the non-maximum wind speed region is well fitted with the observed wind speed of the buoy stations. In addition, When Vmax published is greater than or equal to 40 m·s-1, the simulated Vmax is close to the published Vmax if B is equal to 1.4 and z0 is equal to 0.005 m, and the simulated wind speed of non-maximum wind speed region is more reasonable when B is equal to 1.0 and z0 is equal to 0.005 m.
  • Fig. 1  Distribution of buoy stations

    Fig. 2  Relationship between factors and Rmax in the Northwest Pacific from 2001 to 2018

    (the blue top and bottom lines represent the 75th and 25th percentiles(set as U and D), respectively, the orange horizontal line represents the median, and the red triangle represents the 95th percentile, the black upper and lower horizontal lines are the upper and lower limits of data, calculated by U+1.5(U-D) and D-1.5(U-D)), the black circles represent outliers)

    Fig. 3  Comparison of simulated and observed wind speed at two buoy stations during the influence period of Typhoon Maria(1808) on 10-11 Jul 2018

    Fig. 4  The wind speed of buoy station 12 and Vmax during the influence period of Typhoon Hato(1713) on 22-23 Aug 2017

    Fig. 5  Comparison of simulated and published values of maximum wind speed

    Fig. 6  Simulation diagram of wind field at different times of Typhoon Maria(1808) on 5-11 Jul 2018

    (blue, green, yellow, white and red triangles represent buoy station 3, 4, 6, 7 and 9, respectively)

    Table  1  Grade of factors

    等级 Vmax/(m·s-1) 中心气压/hPa 纬度 台风发生月份 海温/℃
    1 (12, 17] (875, 950] (3°N, 20°N] 1,2,3,12 (15, 20]
    2 (17, 25] (950, 970] (20°N, 25°N] 4,5,11 (20, 27]
    3 (25, 30] (970, 1000] (25°N, 30°N] 6—10 (27, 32)
    4 (30, 40] (1000, 1015) (30°N, 50°N)
    5 (40, 90)
    DownLoad: Download CSV

    Table  2  Rmax based on Scheme 1 and Scheme 2 (unit: km)

    中心气压/hPa 台风发生月份 纬度
    1,2,3,12 4,5,11 6—10 (3°N, 20°N] (20°N, 25°N] (25°N, 30°N] (30°N, 50°N)
    (875, 950] 27 29 32 29 32 37 35
    (950, 970] 32 34 38 34 36 44 38
    (970, 1000] 65 61 68 65 70 67 71
    (1000, 1015) 72 80 93 87 86 83 69
    DownLoad: Download CSV

    Table  3  Rmax based on Scheme 3 and Scheme 4 (unit: km)

    Vmax/(m·s-1) 台风发生月份 纬度
    1,2,3,12 4,5,11 6—10 (3°N, 20°N] (20°N, 25°N] (25°N, 30°N] (30°N, 50°N)
    (12, 17] 72 78 82 79 85 80 82
    (17, 25] 66 62 70 65 69 74 78
    (25, 30] 41 43 53 45 53 57 58
    (30, 40] 37 36 41 37 41 43 42
    (40, 90) 27 30 33 29 32 41 36
    DownLoad: Download CSV

    Table  4  v′ of buoy stations

    台风 站号标识 z0/m v′/(m·s-1)
    B=1.0 B=1.2 B=1.4 B=1.6
    天鸽(1713) 12号 0.020 3.03 5.08
    0.010 4.10
    0.005 2.54* 4.97
    0.001 3.88
    天鸽(1713) 13号 0.020 5.45 7.90 10.16
    0.010 4.17* 7.05 9.65
    0.005 5.38 8.41
    0.001 7.46 10.72
    帕卡(1714) 13号 0.020 1.78* 2.95 3.83
    0.010 2.78 4.04
    0.005 3.63 4.97
    0.001 5.08 6.57
    玛莉亚(1808) 5号 0.020 3.2 2.49 2.25
    0.010 1.65 0.82 0.49
    0.005 1.70 0.27* 0.60 0.99
    0.001 0.57 2.19 3.23
    玛莉亚(1808) 8号 0.020 5.01 7.66 10.08
    0.010 6.52 9.32 11.88
    0.005 4.55* 7.78 10.72 13.41
    0.001 6.47 9.95 13.11
    玛莉亚(1808) 10号 0.020 2.72 2.49 2.75
    0.010 1.53 1.25 1.45
    0.005 1.41 0.48 0.15* 0.34
    0.001 0.31 1.39 1.84
    米娜(1918) 4号 0.020 6.10 4.87 4.07 3.71
    0.010 5.07 3.74 2.89 2.46
    0.005 4.19 2.76 1.85
    0.001 2.68 1.08*
    巴威(2008) 1号 0.020 1.14 1.22 1.76
    0.010 0.07* 0.12 0.65
    0.005 0.32 0.86 0.84
    0.001 1.85 2.52 2.58
    巴威(2008) 2号 0.020 1.90 0.12* 1.31
    0.010 0.47 1.41 2.95
    0.005 1.63 0.76 2.73 4.38
    0.001 0.24 2.85 5.06
    美莎克(2009) 2号 0.020 5.95 6.31
    0.010 4.75 4.56 4.90
    0.005 3.59 3.38 3.69
    0.001 2.46 1.49 1.17*
    注:*表示浮标站v′同时满足规则1和规则2。
    DownLoad: Download CSV

    Table  5  The frequency of nine combinations of values of B and z0 and the average value of v

    Bz0取值组合 次数 v′平均值/(m·s-1)
    B=1.0,z0=0.005 m 2 2.81
    B=1.4,z0=0.001 m 1 4.50
    B=1.4,z0=0.005 m 1 2.90
    B=1.4,z0=0.020 m 1 4.08
    B=1.0,z0=0.010 m 1 4.01
    B=1.0,z0=0.020 m 1 3.94
    B=1.2,z0=0.005 m 1 3.49
    B=1.2,z0=0.001 m 1 4.31
    B=1.2,z0=0.010 m 1 3.39
    DownLoad: Download CSV

    Table  6  Observed and simulated wind speed of buoy stations test during the influence period of Typhoon Maria(1808) from 2300 BT 10 Jul 2018 to 0900 BT 11 Jul 2018

    时间 浮标站站号标识 观测风速/(m·s-1) 模拟风速/(m·s-1)
    2018-07-10T23:00 3号 20.7 18.3
    4号 16.2 14.7
    6号 19.5 17.0
    7号 29.0 26.9
    9号 15.7 14.6
    2018-07-11T00:00 3号 22.3 20.3
    4号 17.4 16.3
    6号 19.9 19.1
    7号 32.4 32.0
    9号 12.5 15.9
    2018-07-11T01:00 3号 22.9 21.9
    4号 17.9 18.3
    6号 23.6 22.3
    7号 27.6 38.5
    9号 17.4 18.0
    2018-07-11T02:00 3号 20.6 24.4
    4号 19.1 21.3
    6号 30.6 27.0
    7号 26.3 37.0
    9号 19.2 20.1
    2018-07-11T03:00 3号 25.4 25.5
    4号 20.9 24.7
    6号 32.7 33.7
    7号 36.7 33.7
    9号 24.1 22.2
    2018-07-11T04:00 3号 24.2 23.1
    4号 27.8 26.2
    6号 27.5 39.8
    7号 34.9 27.0
    9号 27.1 26.7
    2018-07-11T05:00 3号 21.8 20.6
    4号 26.7 25.5
    6号 30.0 38.5
    7号 26.6 22.9
    9号 28.8 30.3
    2018-07-11T06:00 3号 19.2 19.5
    4号 23.1 24.9
    6号 35.7 35.3
    7号 20.6 21.3
    9号 30.1 31.2
    2018-07-11T07:00 3号 18.9 18.5
    4号 21.8 24.0
    6号 29.5 32.1
    7号 18.8 19.8
    9号 30.7 31.3
    2018-07-11T08:00 3号 16.1 17.4
    4号 15.5 23.3
    6号 22.9 28.0
    7号 18.2 17.8
    9号 25.5 28.3
    2018-07-11T09:00 3号 16.4 13.9
    4号 15.4 18.9
    6号 19.3 21.3
    7号 14.0
    9号 21.9 22.7
    DownLoad: Download CSV
  • [1]
    Cai Z Y, Xu L Y, Xu Y T. A study on the tropical cyclone disasters in China. Chinese J Atmos Sci, 1994, 18(Suppl I): 826-836. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK4S1.006.htm
    [2]
    Gao S Z, Zhang S J, Lü X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in South China Sea. J Appl Meteor Sci, 2021, 32(3): 272-288. doi:  10.11898/1001-7313.20210302
    [3]
    Liu D H, Song L L, Li G P, et al. Analysis of the extreme loads on offshore wind turbines by strong Typhoon Hagupit. J Trop Meteor, 2011, 27(3): 317-326. doi:  10.3969/j.issn.1004-4965.2011.03.004
    [4]
    Yan J M, Zhao B K, Zhang S, et al. Observation analysis and application evaluation of wind profile radar to diagnosing the boundary layer of landing typhoon. J Appl Meteor Sci, 2021, 32(3): 332-346. doi:  10.11898/1001-7313.20210306
    [5]
    Shi L J, Xu X F, Li B, et al. Application of Doppler radar data to the landfalling Typhoon Saomai simulation. J Appl Meteor Sci, 2009, 20(3): 257-266. doi:  10.3969/j.issn.1001-7313.2009.03.001
    [6]
    Pan Y S. Application Research of East Asian Regional Reanalysis to Tropical Cyclone Simulation in the North Pacific. Zhanjiang: Guangdong Ocean University, 2020.
    [7]
    Zhang R Y, Xu Z H, You L J, et al. Wind and rainfall features and risk assessment of tropical cyclone in Fujian. J Appl Meteor Sci, 2012, 23(6): 672-682. doi:  10.3969/j.issn.1001-7313.2012.06.004
    [8]
    Chen Y, Zhang N. The wind turbulence of the near-surface layer of Jiangsu coastal area and its response to typhoon. J Appl Meteor Sci, 2019, 32(2): 177-190. doi:  10.11898/1001-7313.20190205
    [9]
    Chen L S. The evolution on research and operational foresting techniques of tropical cyclones. J Appl Meteor Sci, 2006, 17(6): 672-681. doi:  10.3969/j.issn.1001-7313.2006.06.005
    [10]
    Shapiro L J. The asymmetric boundary layer flow under a translating hurricane. J Atmos, 1983, 40(8): 1984-1998. doi:  10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2
    [11]
    Cardone V J, Greenwood C V, Greenwood J A, et al. Unified Program for the Specification of Hurricane Boundary Layer Winds over Surfaces of Specified Roughness. Washington DC: US Army Corps of Engineers, 1992: 12-35.
    [12]
    Meng Y, Matsui M, Hibi K. An analytical model for simulation of the wind field in a typhoon boundary layer. J Wind Eng Ind Aerod, 1995, 56(2/3): 291-310.
    [13]
    Guo Y X, Hou Y J, Qi P. Comparison of extreme wind speeds predicted by Monte-Carlo simulation and empirical track model. Acta Oceanol Sinica, 2020, 42(7): 64-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC202007006.htm
    [14]
    Zhao L, Ge Y J, Xiang H F. Stochastic parameter sensitivity analysis of typhoon wind field. J Tongji Univ(Nat Sci Ed), 2005, 33(6): 727-731. doi:  10.3321/j.issn:0253-374X.2005.06.004
    [15]
    Xie R Q, Wu T, Wang Y H. Adaptability research on typhoon wind-field model. J Hefei Univ(Nat Sci Ed), 2014, 24(2): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HFXZ201402020.htm
    [16]
    Chen L S, Ding Y H. Introduction to Typhoons in the Western Pacific. Beijing: Science Press, 1979.
    [17]
    Lei X T, Chen L S. A method to construct tropical cyclone wind distribution models and estimate its characteristic parameters. Chinese J Geophys, 2005, 48(1): 25-31. doi:  10.3321/j.issn:0001-5733.2005.01.005
    [18]
    Vickery P J, Wadhera D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H * Wind Data. J Appl Meteorol Climatol, 2008, 47(10): 2497-2517. doi:  10.1175/2008JAMC1837.1
    [19]
    Fang G S, Zhao L, Cao S Y, et al. A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency. J Wind Eng Ind Aerod, 2018, 175: 77-89. doi:  10.1016/j.jweia.2018.01.019
    [20]
    Jiang Z H, Hua F, Qu P. A new scheme for adjusting the tropical cyclone parameters. Adv Mar Sci, 2008, 26(1): 1-7. doi:  10.3969/j.issn.1671-6647.2008.01.001
    [21]
    Li R L. Prediction of Typhoon Extreme Wind Speeds Based on Improved Typhoon Key Parameters. Harbin: Harbin Institute of Technology, 2007.
    [22]
    Hu B H, Tan Y K, Wang J. Calculation of maximum wind velocity radius of tropical cyclone on sea surface. J Appl Meteor Sci, 2004, 15(4): 427-435. doi:  10.3969/j.issn.1001-7313.2004.04.005
    [23]
    Chen D W, Dong J, Yuan F C. Retrieving the radius of maximum wind of typhoon from QuikSCAT wind fields and case analysis. Mar Sci Bull, 2012, 31(4): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201204004.htm
    [24]
    Powell M, Soukup G, Cocke S, et al. State of Florida hurricane loss projection model: Atmospheric science component. J Wind Eng Ind Aerod, 2005, 93(8): 651-674. doi:  10.1016/j.jweia.2005.05.008
    [25]
    Jakobsen F, Madsen H. Comparison and further development of parametric tropical cyclone models for storm surge modelling. J Wind Eng Ind Aerod, 2004, 92(5): 375-391. doi:  10.1016/j.jweia.2004.01.003
    [26]
    Hubbert G D, Holland G J, Leslie L M, et al. A real-time system for forecasting tropical cyclone storm surges. Wea Forecasting, 1991, 6(1): 86-97. doi:  10.1175/1520-0434(1991)006<0086:ARTSFF>2.0.CO;2
    [27]
    Xiao Y F, Duan Z D, Xiao Y Q, et al. Typhoon wind hazard analysis for southeast China coastal regions. Struct Saf, 2011, 33(4/5): 286-295.
    [28]
    Guo Y X, Hou Y J, Qi P. Analysis of typhoon wind hazard in Shenzhen City by Monte-Carlo simulation. J Oceanol Limnol, 2019, 37(6): 1994-2013. doi:  10.1007/s00343-019-8231-9
    [29]
    Zeng Z H, Wang Y Q, Duan Y H, et al. On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv Atmos Sci, 2010, 27(2): 337-355.
    [30]
    Yan J Y, Huang A F. Analysis and calculation of extreme wind speed and wave height for the design of marine engineering. J Appl Meteor Sci, 1990, 1(3): 317-323. http://qikan.camscma.cn/article/id/19900347
    [31]
    Zhang R Y, Zhang X Z, Cai L W. Application of poisson-gumbel distribution to wind speed calculation for the southeast coastland of China. J Appl Meteor Sci, 2010, 21(2): 237-242. doi:  10.3969/j.issn.1001-7313.2010.02.014
    [32]
    Yan J Y, Chen Q J, Zhang X Z, et al. Offshore Climate of China. Beijing: Science Press, 1993.
    [33]
    Zhao Y P, Zhang B C, Chen Y L, et al. The conversion coefficients between the average wind velocity in the different periods. Coast Eng, 1988, 7(3): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC198803008.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(6)

    Article views (1427) PDF downloads(98) Cited by()
    • Received : 2021-05-26
    • Accepted : 2021-09-18
    • Published : 2022-01-19

    /

    DownLoad:  Full-Size Img  PowerPoint